
AD-Aii52 953 INTERFACING THE VAX 11/780 USING BERKELEY UNIX 42BSD 1/2,
AND ETHERNET BASED X..(U) AIR FORCE INST OF TECH
WRIGHT-PHTTER5ON AFB OH SCHOOL OF ENGI. E BERNARD

7 NLSIIDDEC 84 AFIT/GCS/ENG/84D-4-VOL-i F/G 9/2 N

L1. g2

11111.25 ~IIL4 111 1.

II1111111

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

REPRODUCED AT GOVERNST EXPENSE ")

IN
In

I-F

INTERFACING THE VAX 11/780 USING
BERKELEY UNIX 4.2BSD AND

ETHERNET BASED XEROX NETWORK SYSTEMS

THESIS
(Volume 1 of 3)

Craig E. Bernard
Captain, USAF

Cl AFIT/GCS/ENG/84D-4

DTIC
ELECTE

S DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNO

Wright-Patterson Air Force Base, Ohio

......
. . . - . ..- -. . -

INTERFACING THE VAX 11/780 USING
BERKELEY UNIX 4.2BSD AND

ETHERNET BASED XEROX NETWORK SYSTEMS

THESIS
(Volume 1 of 3)

Craig E. Bernard
Captain, USAF

AFIT/GCS/ENG/84D-4 D TIC

ELECTE
AFR 2 61985

v fE

Approved for public release; distribution unlimaited

- -4 - - -

AFIT/GCS/ENG/84D-4

Acce.s l on For

7IC T:.

Ju! t

INTERFACING THE VAX 11/780
By~

USING BERKELEY UNIX 4.2BSD fIztr,

AND ETHERNET BASED XEROX NETWORK SYSTEMS A,,I

THESIS

(Volume 1 of 3)

Presented to the Faculty of the School of Engineering

of the Air Force Institue of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Information Systems

Craig E. Bernard, B. S.

Captain, USAF D TIC
V-".'h' "CTE

Art 2 3 G85

December 1984

E

Approved for public release; distribution unlimited

-7...

~rinr my..- ~Prefacet

The purpose of this study was to assist the Program and

* Financial Control (P&FC) office in the interfacing of the

VAX 11/780, using the Berkeley Unix 4.2BSD operating system,

with Xerox office automation systems on an Ethernet local

area network. The interfacing desired by P&FC would allow

electronic filing, mailing, and printing services between

the VAX 11/780 and Xerox office automation systems on an

* Ethernet.

I would like to thank my thesis advisor, Dr. Gary

Lamont, for his support and guidance in this research,

especially during the rough spots encountered in this

- investigation. I would also like to thank my thesis reader,

Major Walt Seward,, for his valued comments on this thesis

effort.

I would like to especially thank Mr. Clarence Hoop, Mr.

- George Grenley, and Lt. Jim Child for their assistance in

* this research. These individuals were very helpful in the

acquiring of current information for this investigation.

Finally, I would especially like to thank my wife,

*Linda, for proofreading the drafts for this thesis, and for

giving me encouragement during this investigation.

Craig E. Bernard L

3

ai

Table 2L Content&

Volume 1

Page

Preface o . . . * *. ii

List of Figuresvii

List of Tables * . ix

I. Introduction I-x

Kii Ethernet Background e o, 1-3
Design Goalse. . 1-4
Topology o e 1-5
Physical Components . . 1-7
Structure 1-9

Thesis Investigation Overview o I-1
Background I-11
Problem 1-11

Approach ••. . .. 1-13
Materials and Equipment . . 1-14

Outline of Thesis 1-15

II. Protocol Requirements II-1

Introduction @ @ * * e * * * II-1
The ISO Model II-1

Physical Layer Protocol 11-3
Data Link Layer Protocol o . . o . 11-3
Network Layer Protocol o . . . 11-4
Transport Layer Protocol 11-5
Session Layer Protocol 11-7
Presentation Layer Protocol 11-8
Application Layer Protocol 11-9

Xerox Network Structure , 11-9
Overview 11-9
XNS Physical Ly;r. ..- 10
XNS Data Link Layer. 11-13
XNS Network Layer • 11-18

Local Networking as
Applied to the Ethernet 11-18
Internetworking as Applied
to Xerox Network Systems 11-18

iii

Page

XNS Transport Layer 11-21
XNS Routing Information Protocol . . 11-22
XNS Error Protocol * 11-25
XNS Echo Protocol 11-28
XNS Sequenced Packet Protocol . . . 11-30
XNS Packet Exchange Protocol 11-33

XNS Session Layer 11-33
XNS Presentation Layer 0 11-36
XNS Application Layer 11-37TCP/IP Requirements 11-38

Summary 11-39

III. Protocols Implementation Status III-1

Introduction * * III-1
Berkeley Unix 4.2BSD Operating System . . 111-3

User Interface 111-4
Internal Structure 111-5

Socket Layer 111-5
The Communication Protocol Layer . . 111-6
The Hardware Interface Layer 111-6

DARPA Protocols Support 111-7
Ethernet and XNS Software Support . . . 111-8

Overview of Implemented Protocols 111-9
XNS Level Zero 111-9
XNS Levels' One and TwoII-11
XNS Level Three 111-14
XNS Level Four 111-15
TCP/IP Requirement 111-18

Summary 111-18

IV. General Design of a XNS Protocol IV-i

Introduction. . . . IV-l
The Courier Protocol IV-2
Xerox Bulk Data Transfer Protocol IV-8
General Design of the
Xerox Bulk Data Transfer Protocol IV-11

The Initiator. IV-13
Null Transfer IV-19
Immediate Transfer . . . IV-19
Third-Party Transfer IV-20

The Produce Remote Procedure IV-20
Null Transfer IV-22
Immediate Transfer IV-22
Third-Party Transfer. IV-22

The Consume Remote Procedure IV-23
Null Transfer IV-23
Immediate Transfer IV-25
Third-Party Transfer IV-25

Summary a IV-26

iv

Page

V. Implementing and Testing of the L
Xerox Bulk Data Transfer Protocol V-i

Introduction o V-I
Implementation V-3

Detailed Design Implementation V-3
The Initiator System V-4
The Produce and
The Consume Systems V-7
The Bulk Data System V-15

The Send Remote Procedure V-21
The Receive Remote Procedure o . V-22
The Cancel Remote Procedure . . . V-23

Code Implementation V-24
Testing V-26

Static Analysi............ V-26
Dynamic Analysis V-27

Summary 0 . * . . V-29

VI. Conclusions and Recommendations VI-l

Conclusions o VI-l
Recommendations o . o VI-5

Bibliography o o o o o o BIB-1
V itao o. v-1

Volume 2

Appendix A: Ethernet Product Line Information . . A-i

Introduction.. A-i
Advanced Computer Communications A-1

Ethernet Controller Support A-2
ACC's XNS Levels'
One Thru Three Implementations A-2

The Application Interface Module o . A-3 -

The XNS Interface Module A-3
The XNS Protocol Module A-3
The XNS Network Interface Mdl . . A-4

ACC's XNS Level Four Implementation . . A-6
Bridge Communications o . o .. . A-7

Ethernet Controller Support . . . o . o A-8 4
Communications Server/l Device o . o A-9
Communications Server/100 Device . . . A-10
Gateway Server/i Device . oo. . A-Il
Gateway Server/3 Device A-li

Interlan . o o o A-13
Ethernet Controller Support A-13
Network Software Packages A-15

v

.. -..-. .:... :.... -" , . --. . . i . -'.:.ii,/ . .

Page

The Ethernode Package. A-15
Network Terminal Servers A-17
Multivendor Personal
Computer Networking Software A-17

3Com Corporation A-18
Ethernet Controller Support A-19
Host Systems Support A-20
Personal Computers Support A-20

EtherLink A-21
EtherStart A-22
EtherShare A-22
EtherPrint o . .o. o A-23
EtherMail A-23
VAX EtherSeries Software 0 * A-23

Network Research Corporation . o o o . o A-24
File Transfer Service o A-25
Virtual Terminal Service 0 . 0 . 0 0 . A-26
Network Utilities o o . . . A-26
Socket Management A-27

Appendix B: SADT Design B-

Appendix C: SADT Data Dictionary C-1

Appendix D: Detailed Design Structure Charts . . . D-1

Appendix E: Detailed Design Data Dictionary . . . E-1

Appendix F: Test Plan F-i

Appendix G: Points of Contact G-1

Volume 3

Appendix H: Code Implementation H-1

vi

.................... ,
. . ~ ~ * * .- .. *

LIs.Qf Figre

Figure Page

I-i Bus Topology 1-6

1-2 Ethernet Station Components 1-8

1-3 Ethernet Layered Architectue 1-10

II-2 Preamble Encoding II-12

11-3 A Single Cable Segment 11-14

11-4 Two Cable Segments 11-14

11-5 Ethernet Packet 11-16

11-6 Ethernet Data Link Layer 11-17

11-7 Internet Packet 11-20

11-8 Internetwork . . .*. 11-23

11-9 Routing Information Packet 11-24

II-10 Error Packet 11-26

II-l Echo Packet 11-29

11-12 Sequenced Packet 11-31

11-13 Packet Exchange Protocol 11-34

IV-1 The Courier Layered Structure IV-4

IV-2 The Courier Model .. . * &. ... * .* .. IV-5

IV-3 SADT A-0 IV-14

IV-4 SADT AO IV-15

IV-5 SADT Al IV-16

IV-6 SADT A14 IV-17

IV-7 SADT A2 . . o IV-21

IV-8 SADT A3 IV-24

vii

Figure Page

V-1 The Initiator Process V-5

V-2 The ProduceServer Process V-9

V-3 The ConsumeServer Process . . 0 . .0. V-10

V-4 The Produce Process V-I1

V-5 The Consume Process V-12

V-6 The BulkServer Process V-17

V-7 The Send Process V-18

V-8 The Receive Process V-19

V-9 The Cancel Process V-20

A-i NU-lI/XNS Package A-6

A-2 FE-l/XNS Package A-6

A-3 ESPL Products A-10

A-4 Internetworking Via GS/3 A-12

A-5 ITP Architecture A-16

A-6 NETMAN MENU A-16

A-7 EtherSeries Network A-21

viii

• .. i -. _ -. .i...-.....---,..-

Table Page

II-I Error Types 11-27

III-1 XNS Architecture Structure 111-2

111-2 XNS Level Zero Summary 111-10

111-3 XNS Level One Summary I11-12

111-4 XNS Level Two Summary 111-13

111-5 XNS Level Three Summary 111-15

111-6 XNS Level Four Summary 111-16

ix

The Program and Financial Control (P&FC) office would

like to be able to perform electronic filing, mailing, and

printing services between the VAX 11/780, using the Berkeley

Unix 4.2BSD operating system, and Ethernet based Xerox

Network Systems (XNS). This study researched the

implementation of an electronic filing service between the

VAX 11/780 and Ethernet based XNS systems. This study also

researched implementations of the DARPA TCP/IP protocols on

the VAX 11/780, because P&FC is mandated by DOD to use these

protocols for internetworking systems.

This study began by outlining the protocol

specifications required for interfacing with XNS systems.

An extensive literature search was then performed to

determine which of the XNS protocol specifications, as well

as the TCP/IP protocols, were already implemented for the

VAX 11/780. It was found that Berkeley Unix 4.2BSD contains

an implementation of TCP/IP. It was also found that the

Xerox Bulk Data Transfer Protocol, a protocol used by the

electronic filing service to transfer files, was not

implemented. Therefore, a design, implementation, and

testing of the Bulk Data Transfer Protocol were presented.

With the design and implementation presented, most of the

protocols needed to implement an electronic filing service

on the VAX 11/780 exist. However, Xerox has not yet

released its electronic filing protocol for public use.

x

and the transport layer, compose the middle level of

* protocols. The Program and Financial Control office is part

of the Department of Defense (DOD), and therefore is

mandated to use the DOD protocols for the middle level (38).

Hence, the DOD protocols for the middle level must also be

considered.

The highest level contains the protocols for electronic

filing, as well as other protocols it depends on. The

session layer. presentation layer, and the application layer

compose the highest level of protocols.

The electronic filing service is in level three of the

protocol structure outlined. Inorder for the electronic

filing service to be implemented on the VAX 11/780, the

support protocols it uses in level three, as well as the

protocols of levels one and two must exist. Therefore,

first, the protocols required for networking computers on

Xerox Network Systems is outlined. Second, an extensive

literature search is performed to determine those protocols

that are already implemented on the VAX 11/780 in support of

electronic filing. Finally, a design and implementation of

one of the support protocols not already implemented for the

VAX 11/780 in support of electronic filing is performed.

k1aterialz. An Eai~et The following equipment is

required:

1. A VAX 11/780 with the Berkeley Unix 4.2BSD

operating system.

1-14

outlined by the Ethernet Specificaton (16). The network

layer concerned with the local transfer of data on an

Ethernet is also outlined in the Ethernet Specification.

The network layer of the ISO model concerned with the

transfer of data between networks, and the transport layer

of the ISO model, are outlined by the Xerox Internetwork

Transport Protocols (54) . The session layer of the ISO

model is not defined in Xerox Network Systems. The

presentation layer of the ISO model is outlined by the Xerox

Courier Protocol (55) and the Xerox Bulk Data Transfer

Protocol (56). The protocols used for such network services

as electronic filing, mailing, and printing are part of the

application layer of the ISO model.

Ap.Qoac. Electronic filing is considered a high level

form of communications used among Xerox computer devices on

an Ethernet based Xerox Network System (54:8). There are

three distinct levels of protocols that must be developed on

the VAX 11/780 to allow it to perform electronic filing with

Xerox computer devices on an Ethernet.

The lowest level is concerned with the physical

connection of the VAX 11/780 to the Ethernet for data

transmission. The physical layer, data link layer, and the

network layer associated with local data routing, makes up

the lowest level of protocols.

The middle level enables the communications of

information between mutiple connected network systems. The

network layer associated with data routing between networks,

If the Vax 11/780 is to interact with Xerox computer

devices on an Ethernet, it must contain the same layers of

protocols that the Xerox computer devices use. Hence, the

communications protocols must be designed and implemented on

the Vax 11/780 to enable it to perform the functions

outlined by the Program and Financial Control office. The

functions desired by the Program and Financial Control

office are contained in the communications protocols of the

highest layers of the ISO model, the application layer.

Therefore, the other layers of the ISO model must be

designed and implemented on the VAX 11/780 to enable it to

communicate with Xerox computer devices on an Ethernet.

Sce. This research project examines the

communications protocols that must be implemented on the VAX

11/780 to allow an electronic filing service between the VAX

11/780 and Xerox computer devices on an Ethernet. The

examinination of support for electronic filing is chosen

because electronic filing is the basis for transferring

information between computer systems on a network. The

establishment of an electronic filing service provides

support for other application services that require file

transfer support, such as electronic printing and mailing.

Standards. All communications protocols designed and

implemented for the VAX 11/780 in support of electronic

filing with the Xerox computer devices on an Ethernet uses

the Xerox Network Systems standards. The lower two layers

of the ISO model, the physical and data link layers, are

1-12

Thesis~ Investigation overview

BakgQoun. The Program and Financial Control office

would like the VAX 11/780 with the Berkeley Unix 4.2BSD

operating system to appear on their Ethernet based Xerox

Network System in a dual role. One role of the VAX 11/780

on their network would be as a stand alone computer

workstation which could request services from Xerox office

automation computers on the Ethernet network. Some of the

services the VAX 11/780 would be able to request are

electronic filing, printing, and mailing. The other role of

the VAX 11/780 on their network would be as a service device

which could process requests for service from Xerox

workstations on the Ethernet. Some of the services which

could be requested are electronic filing, printing, and

mailing. The functions the Program and Financial Control

office would like the VAX 11/780 to perform in its dual role

are electronic mailing, graphics, spread sheets, records

processing, printing, plotting, photocomposition, voice

synthesis, and electronic filing (27).

Probem. Xerox office automation computers on an

Ethernet communicate through layers of protocols based on

the network communications architecture outlined by the

International Standards organization for Open Systems

Interconnection (65). Each layer of protocol, that composes

the network architecture model outlined by the International

Standards organization (ISO), is built on the protocols

below it.

-. I -W A~ I, W I *

The two control variables are set by the data link

layer and accessed by the client layer. One control

variable gives the status of data being transmitted on the

Ether. The other control variable gives the status of data

being received at *a station.

The data items passed between the client and data link

layers contain the source address, destination address,

data, and the type of information. The values of the data

items are set by the client layer when transmitting data on

the Ether. The data link layer sets the data items when it

receives information from the Ether.

The interface between the data link and physical layers

provides the controls for transmission of data between the

two layers. There e three control signals used in this

I ~ interface (16:9). The data link layer sets one of the

signals and the physical layer sets the other two signals.

The data link layer sets a control signal, called

transmit, which tells the physical layer it wants to

transmit a packet.

The physical layer sets a control signal, called

collision, if it detects a collision of its station data on

the Ether. The physical layer also sets another control

signal, called receive, when it begans reading data from the

Ether. These control signals are used to control the

direction data is flowing between the data link and physical

layers, and to suspend transmitting a packet on the Ether

due to a collision.

I-10

Structurg. The Ethernet has a layered architecture

-(See Figure 1-3). There are specified interfaces which

L4 separates the higher layers of the ISO model from the data

link layer. and the data link layer from the physical layer.

The layers of the ISO model above the data link layer is

rn referred to as the client layer in Ethernet terminology.

The interfaces between the client, the data link, and the

physical layers specifies the data and control information

* exchanged between layers.

Client Layer

Interf ace

Data Link Layer

Interf ace

Physical Layer

Figure 1-3. Ethernet Layered Architecture

Source: 16:8

0

The interface between the client and data link layers

is the means for higher layers of the ISO model to transmit

data and also to receive data from the Ether. This

* . interface has two control variables and four data items

(16:9).

1-9

ARHTCUE B ae

FUNC4ETION

w / bS"MD ik.C&aT Sk

l~wfake ECmapazibMe= zy__Receiv
asefae

SE
Figuremive 1-2.lt Eteneatainlopoet
Source:abl:

TYIA

DOLEMETAI-B

0 / u.w

design goal of maintaining a consistent data rate throughout

the network. However, there are devices, called repeaters,

that can be used to connect Ether cables together that

allows a maximum separation between stations on an Ethernet

to be 2.5 kilometers (Km) (16:47).

Phygial CQmpne s. Each station on an Ethernet must

contain certain components inorder to communicate on the

Ether (See Figure 1-2). These components are a transceiver,

a controller, and a transceiver cable.

The transceiver connects a station to the Ether cable.

The transceiver receives and transmits data on the Ether.

The transceiver also detects when the data being sent by a

station has collided with other data on the Ether.

Stations on an Ethernet must also contain a controller.

The controller contains the data link layer protocol and

some of the circuitry that makes up the physical layer

protocol. The Ethernet's data link layer provides data

encapsulation and link management functions as outlined in

the ISO model.

The final component which makes up the connection of a

station to the Ether cable is the transceiver cable. The

controller will reside at the station and the transceiver

will be connected to the Ether cable, therefore a cable

called the transceiver cable is used to connect the

controller to the transceiver. The transceiver and

transceiver cable on an Ethernet are part of the physical

layer.

1-7

- w-

Figure I1. BUS TopologY

Source: 24:316

An Ethernet can contain up to 1024 stations. The

Ether. which is the physical link that connects all the

stations on an Ethernet, uses baseband coaxial cable

technology. The Ethernet uses the coaxial cable for

* . transferring data at a rate of 10 million bits per second

(Mbps). This high bandwidth of data transfer in a short

time period makes using a local area network, such as the

Ethernet, very acceptable for use where response time is

important. However. the word local in this network

technology means just that. A single Ether cable can only

be extended up to 500 meters. The reason for this is a

1-6

0" " " "' "" ' " " " " " ' " "' " "

' not allow full duplexing. It was felt that the high data

rates provided by the network eliminated the need for full

duplexing. The error control provided by the Ethernet would

be as simple as possible. The Ethernet would only do

checksum error detection to detect transmission errors,

however it would do collision detection and recovery of

network traffic. Again, more elaborate error control is

left to higher layer protocols.

Ig29 ogy. The Ethernet uses a bus structure for

communications of information between stations (See Figure

I-1). Each station on an Ethernet may attempt to transmit

information at anytime on the bus. The information to be

sent on the bus must be decomposed into smaller units to

form packets of information. The contention for the bus,

W) called the Ether, is resolved by using a technique called

Carrier Sense Mutiple Access with Collision Detection

(CSMA/CD) (10:4). Carrier Sense Mutiple Access requires

that each station must listen to the Ether before

transmitting data. If the Ether is already being used by

another station (carrier) then the station attempting to put

data on the Ether must wait until the bus is free.

Collision Detection is used to detect when data has collided

on the Ether. This occurs when more than one station puts

data on the Ether at roughly the same time. The stations

that were transmitting data during a collision period trys

to retransmit their data after waiting a random length of

time.

" - 1-5

* -..- * *.* . * . * .* - *

and contention strategies used by competing systems in a

network for access to the shared medium. The data link

layer protocol specifies how the data is packaged for

transmission on the shared medium.

Design Goals. Many considerations were taken into

account in the design of the Ethernet (16:4). The Ethernet

is designed for use in office automation communications to

assist computer growth in an organization. The control of

the Ethernet and access to it would be designed so that no

one station could dominate the network. Criteria would be

set on the length an Ethernet could be extended to maintain

a consistent data rate throughout the network. A flexible

addressing scheme for station communications was also

considered. The addressing scheme would not only have to

allow station to station addressing, but also a station to a

group of stations, or a station to all the stations on the

network. One of the most important considerations in the

design of the Ethernet was to maintain compatibility between

Ethernet implementation. This would be accomplished by

building the communcations on the Ethernet in a layered

approach and outlining specifications for each layer.

There were several network processes that would not be

part of the Ethernet requirements (16:5). The Ethernet

would not handle security issues such as encryption of data

and measures to combat hostile users. Security measures to

handle these issues however, could be handled by higher

layer protocols using the Ethernet. The Ethernet also would

1-40" I

-7 7. -1

---,office has already installed a Xerox Ethernet local area

network. This network has Xerox office automation computers

such as workprocessors, workstations, laser printers, and

microcomputers connected to it,, The Program and Financial

Control office not only needs the computing power provided

by their Ethernet local area network, Jbut there is also a

need for using a mainframe computer for data processing. /

Therefore, the Program and Financial Control office is

planning to acquire a Digital Equipment Corporation VAX

11/780 mainframe computer with the Unix Berkeley 4.2BSD

operating system. They are also planning to connect the VAX

11/780 mainframe computer to their Ethernet local area

network.

r Ethernet sgun

The Ethernet local area network was developed by a

joint effort between Xerox, Intel, and Digital Equipment

corporations (16). The Ethernet architecture is composed of

the hardware and software specifications to facilitate

communications between computer devices (stations). The

International Standards Organization (ISO) developed a seven

layer architecture for communication between computers in a

computer network (65). Each layer of the architecture is

* built on the lower layers. The Ethernet architecture

encompasses the lower two layers of the ISO model, the

physical and data link layers.

9 _The physical layer protocol specifies the allocation

1-3

6i

* where a limited amount of computing power is needed. These

new computers that have been added to the office are

referred to as c. fice automation computers. The

introduction of all of these new computers to the office

created a need to share information among them. This need

brought about the development of the local area networks

technology.

Local area networks allow autonomous computing devices

the ability to share information., It is very advantageous

to setup a local area network when t ere are many different

computing devices in an office. A local area network allows

6 wordprocessors, workstations, and microcomputers to share

information and very costly resources such as printers,

plotters, and disk storage. However, a local area network

of office automation computers does not solve all of the

computerized needs of all offices. Some offices not only

need the onsite computer devices such as wordprocessors,

workstations, and microcomputers, but also the power of a

mainframe computer. Therefore, a local area network might

have to include provisions for exchanging of information

between an office's mainframe computer and its office

automation computers.

The Office of the Assistant Secretary of Defense

Comptroller (Program and Financial Control office) is an

organization which needs a local area network that contains

office automation computers and a mainframe computer for

information management. The Program and Financial Control -) -

1-2

,%

INTERFACING THE VAXl SING BERKELEY UNIX 4.28SD

N ETHERNET BASD XEROX NETWORK SYSTEMS

I. Introduction

Computers are now a part of many offices. Large

mainframe computers were first used in offices for numerical

calculations and daily transaction processing. However, the

mainframe computers were mostly used at night for processing

jobs in batch mode. Toda', >mainframe computers are

accessible online and are the mainstay of the computing

power offices use Although the mainframe computers are now

accessible online, they are not used for processing all of

the information that must be managed in an office.

Mainframe computers are used primarily by offices for

maintaining large databases and doing number crunching.

This is mainly because it is the most cost effect way to use

these very expensive computer systems.

The evolution of computers has produced new computer

devices that can be used in offices. Wordprocessing

computers enable secretaries to produce and maintanin

documents more efficiently. Workstation computers give

professionals tools that assist them in the performance of

their duties. Workstation computers are also used for data

processing. Microcomputers are used in special applications

I-i 'p

2. An Ethernet controller board for installation in

the Unibus of the VAX 11/780.

.4

3. An Ethernet Transceiver for connecting the VAX

11/780 to an Ethernet.

4. An Ethernet Transceiver cable for connecting the

Ethernet Transceiver to an Ethernet.

5. An Ethernet based Xerox Network System with at

least:

A. A Xerox File Server.

B. A Xerox Print Server.

C. A Xerox 8010 workstation.

D. The Xerox Clearinghouse Service.

outline DfThsi

This thesis concentrates on an investigation of those

protocols needed to allow a VAX 11/780, using the Berkeley

Unix 4.2BSD operating system, to communicate with Xerox

computer systems on an Ethernet local area network. Chapter

Two outlines the protocols that are required for interfacing

the VAX 11/780 and Ethernet based Xerox Network Systems.

Chapter Three presents the current status of those protocols .

that have, or have not, been implemented in support of

interfacing the VAX 11/780 and Ethernet based Xerox Network

Systems. Chapter Four presents a general design of the

1-15

Xerox Bulk Data Transfer Protocol, a protocol that is

required for interfacing with Xerox Network Systems but has

never been implemented for the VAX 11/780. Chapter Five

* presents an implementation and testing of the Xerox Bulk

*Data Transfer Protocol. Finally, Chapter Six specifies

conclusions reached in this investigation, along with

recommendations for future research efforts.

* This thesis also includes a number of appendices.

Appendix A contains Ethernet product line information.

Appendix B contains a SADT general design of the Xerox Bulk

Data Transfer Protocol. Appendix C contains a data

dictionary of terms used in Appendix B. Appendix D contains

a detail design of the Xerox Bulk Data Transfer Protocol

using structure charts. Appendix E contains a data

dictionary of terms used in Appendix D. Appendix F contains

a test plan for dynamically testing an implementation of the

*Xerox Bulk Data Transfer Protocci. Appendix G contains a

- list of the individuals and the organizations contacted

during the course of this investigation. Appendix H

contains an implementation of the Xerox Bulk Data Transfer

Protocol written in the IC' programming language.

1-16

II. ±&Q.~j Reguirement

Introduction

This chapter discusses those protocols that must be

implemented on the VAX 11/780, using the Berkeley Unix

4.2BSD operating system, to allow it to interface with

Ethernet based Xerox Network Systems. This chapter also

discusses the need the Program and Financial Control office

L has for the use of the TCP/IP protocols. First, an overview

of the ISO model for network structures is presented.

Second, an overview of the Xerox network structure as it

relates to the ISO model is presented. Third, a discussion

of the TCP/IP protocol requirements is presented. Finally,

the protocols are outlined that have to be implemented on

the VAX 11/780 to enable it to interface with Xerox Network

K Systems.

LSQ Model

Many different network structures exist for networking

and sharing computer systems. Each structure is composed of

functional areas called protocols. A protocol specifies theF: convention for the orderly exchange of information between
two computing elements over a communication path (49). Most

network structures use a layering of protocols. In a

layered protocol structure, each of the protocol layers has

to interface with the protocol layers above and below it,

except the highest and lowest layers.

The highest protocol layer is directly concerned with

providing services for users of a network system. Network

services such as electronic filing, printing, and mailing

* are performed by protocols implemented in the highest layer

of a network structure.

The lowest protocol layer specifies the access

strategies used for allowing computer systems to share a

common physical medium, that is the physical network.

Between the highest and lowest protocol layers are

other protocols which ensure a user request is sent and

received by other computer systems on a network. Each

computer system on a network must contain all the protocol

layers specified by a network architecture in order to

communicate with other systems on a network. This is

because each protocol layer of a network structure

communicates only with its peer protocol layer.

The ISO model is a layered protocol structure used by

many network structures. It was developed to assist network

interfacing by providing a standard for network structures.

The ISO model subdivides the functions of a network system

into seven layers (See Figure 11-1). This subdivision of

network functions simplifies the overall task of interfacing

systems on a network. The reason being the interfacing is

done in increments, hence the implementation of each

separate network function is less complicated.

11-2

Irrrr t. #-,-

-rr

.'

-

''.-

'

-

-

application layer layer 7

presentation layer layer 6

session layer layer 5

transport layer layer 4

network layer layer 3

data link layer layer 2

physical layer layer 1

Figure 11-1. ISO Model.

Physial~ Lyercx Prtcl The physical layer provides

mechanical, electrical, functional, and procedural

characteristics to establish, maintain, and release physical

connections (65:430). This includes the scheme used by a

network for allowing the use of the transmission medium.

Other issues which are covered by the physical layer are

constraints on the physical medium and location of computer

devices on a network.

DA&LayeriProtocol. The purpose of the data link

layer is to provide the functional and procedural means to

9 establish, maintain, and release data links between network

entities (65:430). A data link between devices on a network
can be in one of two forms, connection oriented or

connectionless.

In a connection oriented method, a data link between

computer devices must first be initiated before data can be

sent over a communications link. Once data transfer has

11-3

been completed over a data link, the data link must be

terminated.

In a connectionless scheme, a single frame of data is

passed from one device on the network to another. The

connectionless scheme is described in the IEEE 802 Data Link

Control Protocol (35). There is no handshaking to ensure

data sent was received by the destination station when a

connectonless scheme is used. This scheme is normally used

on high transmission rate networks, such as local area

networks. The reliability that data will be received by a

device on the network, when a connectionless scheme is used,

is ensured by higher layer protocols of a local area

network.

The data link layer also addresses the issue of data

framing. Data framing specifies the field contents of a

frame of information to be transmitted on the network.

Fields are separated by control characters, or by specifying

the length for each field in a frame. A frame of

information usually contains the source and destination

device address fields, the data field, and the error check

field.

Network L Protocol. The network layer provides

routing and switching of information in a network system

(65:430). The network layer is composed of two sublayers.

One sublayer is concerned with network traffic for a local

network. The other sublayer is concerned with network

traffic between network systems, which is called an

internetwork, or internet.

11-4

The network layer, like the data link layer, may use a

connection oriented or a connectionless scheme for network

traffic routing and switching. In a connection oriented

scheme a logical link is established between the source and

destination devices on a network. Once a link has been

established, blocks of information called packets, are

transmitted from the source device to the destination

device. The link is not terminated until all packets

tramsmitted have been acknowledged by the destination

device.

In a connectionless scheme, packets are transmitted

e independently. This is known as datagram delivery. The

routing used to transmit individual packets may also be

different, because logical packet routes are not predefined.

This scheme allows for a simpler strategy for routing

packets. The reason being routing information, such as

state tables, do not have to be maintained.

TransaoLt Layer Ptocol. The transport layer is

concerned with the reliable and cost effective transfer of

data in the network (65:430). There are five types of

transport services: connection oriented, connectionless,

broadcast, multicast, and expedited (14:25).

A connection oriented service initiates, maintains, and

terminates a connection between transport layers of a

network system. A connection is not terminated until all

the information has been reliably tramsmitted between two

devices on a network.

11-5

A connectionless service provides the reliable transfer

of one packet of information between computer devices on a

network.

The broadcast service transfers a packet of information

to all computer devices on the network. This service does

not ensure that the packet broadcasted was reliably received

by all devices on a network.

The multicast service transfers a packet of information

to a group of computer devices on a network. This service

also does not ensure that the packet transmitted was

reliably received by all devices which make up a multicast

group.

The expedited service provides a means for exchanging

information between transport layers in a short time

periord. This is accomplished by limiting the packet size

when using this service.

The transport layer provides reliable transfer of data

through the use of certain functions. Some of the basic

functions used by a reliable transport layer are sequence

control, error detection and error recovery, and information

assembly/disassembly (14:27).

The sequence control function ensures that all the

packets, which makes up a block of information, were

received by a destination device on the network. This

function is carried out by assigning consecutive sequence

numbers to packets as they are transmitted. The sending

computer device's transport layer checks to make sure all

11-66"

the packets were received by keeping track of the sequence

numbers received by the destination computer device's

transport layer. If the destination computer device did not

receive all of the packets of an information block, then the

sending computer device transmits those packets which were

not received.

The error detection function is carried out by adding a

field to the transport layer packet for data validation,

such as a checksum or a cyclic redundancy check field.

Depending on the type of check field used for data

validation, the transport layer may also be able to do error

recovery. This can only be done with check schemes which

cannot only detect errors, but also detect where the errors

are in a packet of information.

The assembly function encapsulates data from the

session layer into transport layer packets. The disassembly

function concatenates the data fields of transport layer

packets to form an information block.

Session Laye 2 ro o. The session layer provides

control for binding and unbinding between two presentation

entities, as well as controlling the exchanging, delimiting,

and synchronizing of data between two presentation layers

(65:430). The binding control of a session allows two

presentation layers to communicate through a dialogue. The

unbinding control of a session is the means by which

communication between two presentation layers is terminated.

The presentation layers at either end of a dialogue

11-7

I7

controls the state of a session. One presentation layer

wanting to establish a dialogue with another presentation

layer does so by issuing a request to its session layer.

The session layer then establishes a path by which

communications between the requesting and the destination

presentation layers can carry on a dialogue. This path is

established through the use of the transport layer.

Once a communication path has been established by the

session layer. the presentation layers can carry on a

dialogue. The presentation layers use the structure the

session layer defines for data and message exchange.

The presentation layers terminate a dialogue by issuing

the appropriate message to the session layer. The session

I I~elayer then terminates the connection established by the

transport layer.

Presentation Laye.r ProtocolQ. The presentation layer

provides services which may be selected by the application

layer to enable it to interpret the meaning of data

exchanged (65:430). The presentation layer provides a

structuring of data that can be used by the application

layer to transfer information.

The application layer conveys to the presentation layer

the data structure it wishes to use to transmit/receive

information. The presentation layer then makes the

appropriate transformation of the data depending on whether

the data is being transmitted or received. If the data is

being transmitted, then it is transformed into a format

11-8

suitable for transmission by the session layer. If the data

is being received, then it is transformed from the session

layer format to the format specified by the application

layer.

Ap22.icatio.n Layeri £LxkQ&Q. The protocols of this

layer directly serve the end user by providing the

distributed information service appropriate to an

application, to its management, and to system management

(65:430). Application services that might be provided for

an end user are electronic filing, mailing, and printing.

System management tools at the application level might allow

collection of statistics on network operations and resource

usage information. This type of information can assist the

manager of a network system in configuration management,

resource management, and workload management of the network.

OyL~ryi~e3w. Xerox has developed a network structure that

not only allows interfacing with Xerox office automation

computers in a local area network environment, but also

allows the internetworking of Xerox Network Systems (XNS)

with other network systems. The Xerox network structure is

a layered protocol structure. The Xerox layered protocol

structure encompasses the network functions outlined by the

ISO model. The level zero protocols contain the protocols

for particular network systems. This is comparable to the

physical layer, data link layer, and the network layer of

H1-9

the ISO model which deals with a single network system. The

level one protocol is comparable to the network layer of the

ISO model that deals with internetworking of network

systems. The level two protocols are comparable to the

transport layer of the ISO model. The level three protocols

are comparable to the session and the presentation layers of

the ISO model. The level four protocols are comparable to

the application layer of the ISO model.

The Program and Financial Control office uses the

Ethernet at level zero of their Xerox Network System. Their

network system contains only Xerox office automation

equipment. All of the Xerox office automation equipment on

their network contains, at a minimum, level one to level

three of the Xerox network structure. Level four protocols

are also resident on Xerox office automation devices on

their network as appropriate. Therefore, in order for the

Program and Financial Control office to have the VAX 11/780

communicate with other devices on their network, it must

also contain the Xerox network structure.

The following discussion relates the Xerox network

structure to the seven layer ISO model. It is assumed, as

in the case of the Program and Financial Control office,

that the Ethernet is used at level zero for the transmission

of level one to level four protocols of the Xerox network

structure.

Physic.alJ Layer. The physical layer handles the

transmission/reception of Ethernet packets on the Ether.

11-10

This is accomplished by functional components that

produce/receive signals on/from the Ether. The functional

components are an encoder/decoder, synchronization

circuitry, tranceiver cable, carrier sense circuitry, and

the tranceiver (51:31). The encoder/decoder is usually

located on a controller board, which also contains the data

link layer. Each bit sent by the data link layer to the

physical layer is encoded using a Manchester encoding

scheme. This scheme merges the separate bit data and clock

signal into a single, self-synchronization serial bit stream

suitable for transmission on the coaxial cable by the

transceiver (51:96).

The controller board also contains circuitry which

creates/removes a 64 bit pattern before a data link layerr,.
packet is transmitted/received (See Figure 11-2). This 64

bit pattern is called the preamble. The preamble has

alternating l's and 0's for the first 62 bits. The last two

bits of the preamble are set to l's. These two bits signal

the beginning of a packet. The preamble is sent through the

encoder to the tranceiver before the first bit of a data

link layer packet is sent. The preamble is discarded upon

receipt by the physical layer. The preamble is used for

synchronization to ensure data on the Ether is valid to all

stations on the network.

The transceiver cable connects the controller board to

the transceiver. The transceiver cable carries three

signals, and power to the transceiver. The three signals

11-ll

are the receive, transmit, and collision signals. The

transmit signal carries the encoded bits which are to be

placed on the Ether by the transceiver. The receive signal

carries the encoded bits received by the transceiver from

the Ether. This signal is sent to the decoder and also a

carrier sense circuitry at the controller. The carrier

sense circuitry signals the data link layer that data is

available. However, the data link layer must check the

address field of the packet to determine if the packet is

addressed to the station. The collsion signal is activated

by the transceiver when it detects an input transition

before 160 nanoseconds has elasped.

i jo i 10 11 o0...i o,01 1 0 11 11 1
ugh level --

Figure 11-2. Preamble Encoding

Source: 51:98

The physical layer of the Ethernet not only addresses

the requirements of connecting a station to the Ether, but

also how an Ethernet system can be configured. Certain

limits are placed on an Ethernet configuration to ensure a

11-12

Check3sum

Length Level one

Trans oort Control I Packet Typo - Error Addremng and Delivery

Cesination Networlt

Destination Host

Destination Socket

Source Network

Soure HMs

Source Socket

Error Number

Error Parameter Level two

Error Protocoi

Copy of portion of offending packet
Contents

Figure II-10. Error Packet

Source: 54:33

11-26

operation. A request operation requests routing information

*about other networks in the internetwork from an internet

router. The networks that information is requested about is

specified in the object network field(s). An internet

router responses to a request operation by specifying, in

the internetwork delay field(s), how many internetwork

router "hops" it takes to get to the network(s) specified in

the object network field(s). If a internetwork delay field

was set to 16, then a requested network in the object

network field could not be reached by the internetwork

router. The internetwork router sets the operation field to

response, and sends the network information back to the

source host address.

I= Error Protocol. The Error Protocol is used

for reporting the occurrence of an error during the

transmission of internet packets. The Error Protocol

specifies an internet packet format (See Figure II-10). An

internet packet with the packet type set to 2 octal denotes

an error packet. Any socket within a host may generate an

error packet in response to some error condition. The error

packet is addressed to the source network, host, and socket

which caused the error condition. The error number field

represents these conditions (See Table II-1). The error

parameter field, of the error packet, may be set to indicate

the type of parameters to use to determine the kind of error

which occurred. The contents field contains a portion of

the internet packet which caused the execution of the Error

Protocol.

11-25

Checksum

Lengt Level one~

Transport Control I Packet Type * RI Addressing and Delivery

Destination Network

Destination Hoat

Destination Socket

Source Network

Source Host

Source Socket
Operation

Level two
ObMect Network Routing Inf nafion Protocol

interntwork Delay

Object Network

Internetwork Delay

Contents

Figure 11-9. Routing Information Packet

Source: 54:26

11-24

P P- .- ~..- S- - -- - ~ - :--- - -

Source host 0 aI

Source rocessintempcetr

Oedestination
host~~ntwr a g ewri nefc

Fiuestinatio nteNetworkA

Sorewr 5]4:7 eet
host

Encaps11-23o

structure. The five protocols are part of what Xerox calls

its Internet Transport Protocols. The five protocols of the

transport layer provides reliable service by performing

functions such as retransmission, sequencing, duplicate

suppression, and flow control of internet packets (54:2).

X o ting Information Protocol. The logical

function of switching (routing) internet packets between

sockets (that are on the same host), between sockets and

networks (the host is the source or destination of the

packet), and between networks themselves (in an internetwork

router) is abstractly captured in a router (54:5). Each

host system on an internetwork contains a router. Host

systems on the internet which are responsible for

store-and-forward delivery of internet packets between

networks also contains what is called an internet router

(See Figure 11-8).

The Routing Information Protocol provides a means for

host routers and internetwork routers to exchange routing

information. Each router on an internetwork maintains a

routing table of network addresses used by the resident

host. An internetwork router also maintains addresses of

all the networks it is connected to.

The Routing Information Protocol specifies an internet S

packet format (See Figure 11-9). An internet packet with

the packet type field set to 1 octal denotes a routing

information packet. The operation field of a routing

information packet designates either a request or response

11-22

"hop" count of 15, the packet is discarded. The maximum

number of networks an internetwork packet can traverse is

16.

The packet type field is specified by the transport

layer protocols. It defines the type of internet packet

being transmitted. This field is not interpreted by the

Internet Datagram Protcol, but rather by the transport layer

protocols at a destination station.

The address information of an internet packet contains

source and destination network, host, and socket addresses.

The network address specifies the unique address of one of

the networks which makes up an internetwork. The host

address specifies the unique address of one of the host

systems (stations) on an internetwork. The socket address

specifies a unique socket within a host system. A socket is

a uniquely identified object within a host, to which

internet packets can be delivered, and from which internet

packets may be transmitted (13:2). An internet packet can

be addressed to a host system, to a group of host systems

(multicast), or to all the host systems on the internetwork

(broadcast).

X rans ot L . Xerox Network Systems provide

five protocols for the reliable transmission of information

on the internetwork. The five protocols are Routing

Information Protocol, Error Protocol, Echo Protocol,

Sequence Packet Protocol, and Packet Exchange Protocol.

These protocols make up level two of the Xerox network

11-21

0 1

Checksum
Control Lengml Level one

Transport Control I Packet Type Addressing and Delivery

Oetination Network

Debeination Destinabon How

Network Address Hee

Oetination Socket

Source Network

source S ce N

Network Address

* Source Socket

Level two

Undefined

(0 to W bytes of tanspent data) Oaln

* Potential Garbage Byte

0 1 7

Hop Count Packetrype

Figure 11-7. Internet Packet

Source: 54:15

11-20

. ..6, , . . . - . . -: - : ." "i - . - - . " . - . - -,

function of the Internet Datagram Protocol is to address,

route, and deliver standard internet packets, each of which

is treated as an independent entity with no relation to

other internet packets traversing the system (54:14). An

internet packet is indentified as the data field of an

Ethernet packet when the type field of an Ethernet packet

* has a value of 3000 octal.

The Internet Datagram Protocol specifies the format of

the internet packet (See Figure 11-7). The internet packet

format is composed of three areas: control information,

address information, and data. The control information of

an internet packet contains the checksum, length, transport

control, and the packet type fields. The checksum field is

* - used to detect whether the other fields of an internet

packet is valid. If an internet packet is found to be

erroneous, it is discarded without error reporting. Error

reporting should be handled by the transport layer. The

length field specifies the size of internet packets in

bytes. An internet packet may contain a garbage byte to

insure that all internet packets are of an integral size of

16 bit words. The garbage byte is not included in the

length field.

The transport control field is used to keep track of

how many networks an internet packet has transversed. Each

time an internet packet is being transmitted to another

network, the network router increments the "hop" count. If

a network router receives an internet packet which has a

11-19

xsNetwork Lve

- . Local Networking AA AsRpi t2 th Etherne. The

Ethernet uses a connectionless scheme for routine packets.

The network dedicates itself to routing one packet at a

time. However. it does not ensure that the packet will be

transmitted correctly. or at all. Once a packet has been

placed on the Ethernet, every station on the network will

receive it. The destination address field of an Ethernet

packet determines the destination station(s) of a packet.

The Ethernet provides three forms of addressing, station to

station, multicasting, and broadcasting (10:13). In station

to station addressing, the destination station field of an

Ethernet packet designates the destination station. In

multicasting addressing, the destination address field of an

Ethernet packet designates a group of stations that makes up

a multicast group. In broadcasting addressing, the

destination address field of an Ethernet packet is set to

zero, this indicates that the packet is for every station on

the network.

XN Network L

Internetworking as Al 1o Xerox Network

System. Xerox Network Systems use a datagram technique for

delivering internetwork packets. The datagram technique is

a connectionless scheme for internetwork traffic routing and

switching. The scheme for handling internetwork packets is

outlined in the Xerox Internet Datagram Protocol (54). The

11-18

- . -- - -.v.'" .-? .- -

TransmitFrafn RcevFr

msemrble Aramte star receiving

yell deferring on. 0 dnrciig

no yes

startdWAassemble
fame toUw e

trnmisond ne? ejs~trpoes rm~cie rcs
ccvkigDu no rjsntrreoeno) (noin aaLn ee~~aeQenzn

n os w e
Figure 1-6. EterntDaaLikLae

Sorc:163

YIfyes M1u-17
frm

physica~fmulicas bit
6 octem Destination

Frm Oct= SeuecI

Lce Bype wiciithi
Occecam Lransmcred

Figure 11-5. Ethernet Packet

Source: 16:20

11-16

adds the frame check sequence field when constructing

packets to be sent to the physical layer. The frame check

sequence field is used to perform a cyclic redundancy check

(CRC) to detect errors in a packet received from the

physical layer. This check is performed using all fields of

the packet except the CRC field. The function used for

generation of the CRC field and validation of the other

fields is the same one used in the Autodin-II network (25).

The other function which makes up the data link layer

on the Ethernet is called link management (See Figure 11-6).

Link management involves two task, transmitting/receiving

packets to/from the physical layer and handling data

collisions. The packets communicated between the data link

and physical layers are sent 1 bit at a time. The data link

layer can send a packet to the physical layer for

transmission only when the physical layer is not receiving

data from the Ether. The transmission of a packet between

the data link and physical layers is clocked, therefore no

handshaking is required before each bit is transmitted.

However. when the data link layer is transmitting a packet

to the physical layer. it must monitor the transmission

checking for the occurrence of a collsion. If a collision

occurs, the data link layer determines when to try

retransmitting the packet.

11-15

Coaial Cable Segment

Transceiver Cable Coa=W Cable
SmM mau

Transceiver A Conncion
SttUn to Coaxial Cable

(100 max per sement)

Figure 11-3. A Single Cable Segment

Source: 51:79

segment 1

Repeater

Segment 2

Figure 11-4. Two Cable Segments

Source: 51:79

11-146"

consistent 10 Mbps transmission rate, and a limit on the

propogation delay of information on the Ether. For

instance, a cable segment cannot exceed 500 meters (See

Figure 11-3). It also cannot contain more than 100

transceivers.
A

The Ethernet does provide a way to connect cable

segments, by using a repeator device (See Figure 11-4). A

repeator device repeats the signals from one cable segment

to another. However, the maximum number of repeators

allowed within the path of any two stations is two (51:77).

XNS Data LkLave.. The data link layer uses a

connectionless scheme for flow of data on an Ethernet. The

data link layer is composed of two main functions which

allows the transmission/reception of information to/from the

physical layer. called data encapsulation and link

management (16:19). Data encapsulation involves taking

information supplied by the network layer and creating an

Ethernet packet for the physical layer to transmit on the

Ether. Data encapsulation also involves decapsulation of

data out of an Ethernet packet supplied by the physical

layer. The decapsulated data is sent to the network layer.

The Ethernet provides a variable size packet for data

transmission on the Ether (See Figure 11-5). The packet

structure is represented in octets. Each octet represents 8

bits. An Ethernet packet can have from 512 bits to 1200

bits in the data field. The data encapsulation function

11-13: :: ::

Table II-1

Error Types

Error Number Description

0 An unspecified error is detected at
detected at destination.

1 The checksum is incorrect, or the
packet has some other serious
inconsistency detected at destination.

2 The specified socket does not exit at
the specified destination host.

3 The destiantion cannot accept the
packet due to resource limitations.

1000 An unspecified error occurred before
reaching destination.

1001 The checksum is incorrect, or the
packet has some other serious incon
sistency before reaching destination

qW 1002 The destination host cannot be
reached from here.

1003 The packet has passed through 15
internet routers without reaching its
destination.

1004 The packet is too large to be
forwarded through some intermediate
network. The Error Parameter field
contains the length of the largest
packet that can be accomodated.

Source: 54:34

11-27

.r r -. - - . r -: . < - : X' V' W. ' , b . .Z V' -V.. . - -. : , . i

SProtocol. The Echo Protocol is used to

ensure a host system exist on the internetwork. The Echo

Protocol specifies an internet packet format (See Figure

II-li). An internet packet with the packet type set to 3

octal denotes an Echo Protocol packet. The operation field,

of the echo packet, can be set to echo request or echo

reply- If a host wants to determine the existence of

another host, then an echo packet must be constructed with

the operation field set to echo request, and the data field

set to information to be echoed. When a host system

receives an echo packet with the operation field set to echo

request, it will set the operation field to echo reply and

transmit the packet back to the source host system. When

the host system, which initiated an echo packet with echo

request and data to another host, receives an echo packet

with echo reply and the original data sent to the

destination host, then the host system does exist on the

internetwork. However, if the an echo packet with echo

reply is not received from the destination host of an Echo

Protocol exchange, then the host does not exist on the

internetwork.

11-28

- .. .'. :.. .-. ~..---'.. .~.

Checksum

Length Level one
Transport Control Packet Type - Echo Addressng and Delivery

Destination Network

Detnton Most

Destination Socket

Source Network

Source Most

Source Socket-
Operation

Level two
Echo Protocol

Data to be echoed or being echoed

* Figure II-li. Echo Packet

Source: 54:35

11-29

NSegene Packet Prtoo. The Sequenced

*Packet Protocol provides a reliable way of transmitting

internet packets. This is achieved by establishing a

connection between a send device's transport layer and a

receiving device's transport layer. Therefore, the

Sequenced Packet Protocol uses a connection oriented scheme

for the reliable transmission of internet packets. The

Sequenced Packet Protocol transmits informaton that is

received from the session layer. The transport layer

assembles the data it receives into internet packets. Each

packet is sent to a destination station with a sequence

number. The first packet sent has a sequence number of

zero, and successive packets sequence numbers are one higher

then the packet sent before it. Acknowlegement of received

packets by the destination station is sent to the source

station by sending an echo of the packet received. If the

sequence number of a packet echoed to the source station was

higher than expected, then packets were lost or in error.

Therefore, the lost or error packets must be retransmitted

by the source station.

The Sequenced Packet Protocol specifies an internet

packet format (See Figure 11-12). An internet packet with

packet type set to 4 octal denotes a Sequenced Packet

Protocol packet. The connection control field is 8 bits.

The system packet bit, bit 0 of the connection control

field, is used to determine which station the internet

packet is for. The send acknowledgement bit, bit 1 of the

11-30

Checksum L

Length Lel one

Transport Control Paclet T-e SP Addressing and Delivery

Destination Network

Desination Host

Desination Socket

Source Network

Source Host

Source Socket
Connection Control I Datastream Ty""

Source Connection ID L l two

Destinaltion Connection ID Sequenced Packet Protocol

Sequence Number
Acknowledge Number

Allocation Number

Level three
Control

Data

0 4 7 15

Jil 111Reserved Datastresm Type

I End.of-message

Attention

Send Acknowledgement

Sysem Packet

Figure 11-12. Sequenced Packet

Source: 54:38

11-31

*.-- : .- -- - * -. ..- . ,d,,..

connection control field, tells the destination station to

acknowledge every packet received. The attention bit, bit 2

of the connection control field, tells the destination

station to notify the session layer of arrived packets. The

end of message bit, bit 3 of the connection control field,

tells the destination station to convey to its session layer

that it is at the end of a message stream of packets.

The datastream type field is not used by the Sequenced

Packet Protocol. The field is transmitted from the source

sequence packet protocol to the destination sequence packet

protocol, where it is sent to the session layer for

interpretation. This field is used for communications

between session layers of a connection.

The source and destination IDs indentifies the sockets

of the source and destination stations that established a

connection.

The sequence number field keeps track of the number of

packets sent in either direction on a connection. The

destination station can also send sequenced packets to the

source station. Therefore, the connection provides a two

way packet communications path. The sequence number field

is used by the destination station to deduce the order of

packets, to acknowledge them, to suppress duplicates, and to

specify flow control information (54:40).

The acknowledge number field specifies the next

sequence packet the destination station is expecting from

the source station.

11-32

*

The allocation number field specifies the number of

packets that will be accepted at a destination station.

During the operation of a connection, this number may go up,

but not down.

The data field contains session layer data.

SPacket E Protocol. The Packet Exchange

Protocol is used for requesting service from a socket. The

Packet Exchange Protocol specifies an internet packet format

(See Figure 11-13). An internet packet with the packet type

set to 5 octal denotes a Packet Exchange Protocol packet.

The ID field specifies the socket that service is requested

of. The client type field specifies the service requested.

The response to a request is sent to the destination socket

address. If the response sent to the destination socket

address has the ID and client type fields of the original

request, then the data field contains a valid response from

the service socket.

X NSessi nti La.yer Protool. Although, Xerox claims

that it does not implement the session layer of the ISO

model, in fact it really does implement the session layer of

the ISO model. It was stated in the Xerox Internet

Transport Protocols document that Xerox has no protocol

corresponding to layer 5 of the ISO model, the session layer

(54:9). However. the Xerox Courier Protocol, which was

stated in the same document as implementing the presentation

layer. also implements the session layer. The Xerox Courier

11-33

Checksum
lLenoth Level one

Transport Control 1 Packet Type PE Addressing and Delivery

Destination Network

Destination Ho

Destination Socket

Source Network

Source Host

Source Socket

I Level two

client Type Packet Exchange Protocol

Figure 11-13. Packet Exchange Protocol Packet

Source: 54:50

11-34

..

-Y I7 "

Protocol implements two types of session layer services, one

that sets up a session for data exchange, and another that

provides transaction processing services.

The establishment of a session for exchanging of data

between two sockets is referred to as layer one of the

Courier Protocol. Layer one defines a block stream that can

carry blocks of arbitrary binary data between system

elements (sockets) (55:3). A block of data consists of data

Ibits which are multiple of 16 bits. First, a session must

be established between two Courier Protocols. This is

achieved by establishing a connection at the transport

layer. using the Sequenced Packet Protocol. Once a

connection has been established, the version of Courier to

be used must be agreed upon by the sending and receiving

* stations. After the version of Courier to be used has been

* agreed on, the data blocks are transmitted between the

* sending and receiving stations by using the Sequenced Packet

Protocol. After all the data has been sent between the

sender and receiver. the sending station transmits an "end"

packet to the receiving station. Once the receiving station

has received all of the data blocks, it transmits an

"end-reply" packet to the sending station. After the

sending station receives the "end-reply" packet from the

receiving station, it then sends another "end" packet to the

* receiving station to terminate the session.

- Courier also provides a session service for transaction

processing. This service is layer three of the Courier

11-35

Protocol. Layer three defines a message stream capable of

carrying service requests (that is, call messages) and

replies (for example, return and abort messages) between

system elements (55:3). Courier defines four message types

for transaction processing: call, reject, return, and

abort. The call message invokes a socket program. The

reject message is sent back when the requested socket

program can not be executed. The return message is sent

back to acknowledge the successful completion of a socket

program. The abort message is sent back when an error

condition occurs doing the execution of the socket program.

The Packet Exchange Protocol, of the Xerox Internet

Transport Protocols, provides service for remote socket

calls, which is what this type of session service is.

X~Presentation Laer The functions of the

presentation layer are also contained in the Courier

Protocol. Layer two of the Courier Protocol implements the

presentation layer functions. Layer two defines an object

stream capable of carrying structured data (for example,

booleans and cardinals) between system elements (sockets)

(55:3). An object stream is composed of data objects. Each

data object represents a data typing such as integer,

string, or array. Each data object is encoded into multiple

bits of 16. The data objects are then sent to layer one of

Courier for transmission, by using the Sequenced Packet

Protocol of the Xerox Internet Transport Protocols.

Remember. layer one of Courier breaks data objects into data

11-36

blocks for transmission. Therefore, when the data blocks

are received at the destination station, they are assembled

into data objects and decoded by the layer two Courier

Protocol to transform them into their correct data type.

Xerox has also developed a dialogue that application

layer protocols can use to transfer large amounts of

information, called bulk data. This dialogue is defined by

the Xerox Bulk Data Transfer Protocol (56). The Xerox Bulk

Data Transfer Protocol defines a dialogue that the sender

and the receiver of bulk data can use to contact each other,

as well as controlling the transfer of the bulk data.

I= Ap21.icatio.n ILayer. Xerox Network Systems have many

applications available to the user. Some of the

applications available are file service, print service, and

electronic mailing. File service allows workstations on the

network to store and retrieve information on mass storage

areas called file servers. The use of file servers on an

internetwork by workstations also allows sharing of

information stored on the file servers between workstations.

Print service allows workstations to share printers on the

network. Print service allows users to send files from

their own workstation, or files located on file servers, to

a printer on the network for printing. Electronic mailing

11-37

allows mailing of documents, files, and messages to other

workstations on the network.

TCP/IP ReQuirements

The Program and Financial Control office is part of the

Department of Defense (DoD). DoD has adopted its own

protocols for the internetworking of packet switched network

systems. DoD uses the Internet Protocol (IP) at the network

layer. DoD also uses the Transmission Control Protocol

(TCP) at the transport layer. These two protocols are

commonly referred to as TCP/IP. TCP/IP was developed by the

Defense Advanced Research Projects Agency (DARPA) (46, 6,

7). It has been mandated that the use of DoD standard

host-to-host protocols (TCP/IP) is mandatory for all DoD

packet-oriented data networks which have a potential for

host-to-host connectivity across network or subnetwork

boundaries (38). Therefore, the Program and Financial

Control office must comply with this mandate. W

Xerox Network Systems use the Xerox Internet Transport 1
Protocols (ITP) and the Xerox Internet Datagram Protocol

(IDP) at the transport and network layers. Xerox Network

Systems use these protocols for routing internetwork traffic

and for providing reliable transmission of higher layer
.1

protocols information. Therefore, the Program and Financialo

Control office is negotiating with Xerox to provide a device

on a Xerox internetwork which will accept TCP/IP internet

packets and encapsulate them into ITP/I'3P internet packets

11-38

6q.

for routing. However, the Program and Financial Control

office would like the VAX 11/780 to be accessible to

networks in the interwork using TCP/IP. Therefore, TCP/IP

must also be implemented on the VAX 11/780 along with higher

layer protocols supported by TCP/IP such as File Transfer

Protocol (FTP), Simple Mail File Transfer Protocol (SMTP),

and the Terminal/Host Protocol (TELNET) (6).

Summax

The ISO model for network architectures defines a

layering of protocols. This model was developed as a

standard to assist in the internetworking of network

systems. The layering of protocols outlined by the ISO

model is commonly used for the design and implementation of

network structures.

Xerox has develop a network structure based on the

layering of protocols defined by the ISO model. The Xerox

network structure has five levels, beginning with level

zero. Level zero corresponds to layer one, layer two, and

layer three that deals with local area networks, of the ISO

model. Level one corresponds to layer three of the ISO

model that deals with internetworking. Level two

corresponds to layer four of the ISO model. Level three

corresponds to layers five and six of the ISO model. Level

four corresponds to layer seven of the ISO model.

The Program and Financial Control office has

requirements, as outlined in Chapter one, for using a VAX

11-39

11/780 system to interface with a Xerox Network System. The

interfacing will occur at level four of the Xerox network

structure. The interfacing with level four applications

requires the existence of levels three thru zero of the

Xerox network structure on the VAX 11/780, because the Xerox

network structure is layered. Therefore, all four levels of

the Xerox network structure must be implemented on the VAX

11/780 if the Program and Financial Control office

requirements' of interfacing a VAX 11/780 with their Xerox

Network System is to be met.

The Program and Financial Control office, being part of

the Department of Defense, is mandated to use the TCP/IP

protocols at the network and transport layers for

internetwork communications. Therefore, an implementation

of TCP/IP for the VAX 11/780, using Berkeley Unix 4.2BSD, is

alse required.

The Program and Financial Control office is, first,

interested in the interfacing of the VAX 11/780 with

Ethernet based Xerox Network Systems. Second, interested in

having a capability of interfacing with other networks via

the TCP/IP protocols. Hence, the rest of this thesis is

geared toward the accomplishment of the goal of interfacing

the VAX 11/780 with Ethernet based Xerox Network Systems.

The interfacing of Xerox Network Systems and networks using

TCP/IP is a thesis effort in itself. Since the Program and

Financial Control office would like the VAX 11/780 to

eventually interface with host systems on TCP/IP networks,

11-40

Table 111-4

XNS Level Two Summary

XNS Level Two A B C I N

Sequenced Packet F F N F F
Protocol
Echo Protocol F F N F F
Packet Exchange Protocol N F N F F
Error Protocol P F N F F
Routing Information P F N F F
Protocol

Definition of Symbols:

A = Advanced Computer Corporation B = Bridge
Communications

C = 3Com Corporation I = Interlan
N = Network Research Corporation F = Full

Implementation
P = Partial Implementation N = No

Implementation

XNS level one is specified by the Internet Datagram

Protocol. XNS level two is specified by the Echo Protocol,

the Error Protocol, the Sequenced Packet Protocol, the

Packet Exchange Protocol, and the Routing Information

Protocol.

Bridge Communications and Network Research Corporation

claim to fully implement the XNS level one and the XNS level

two protocols for the VAX 11/780 with the Berkeley Unix

4.2BSD operating system.

Interlan claim to fully implement the XNS level one and

the XNS level two protocols, but they do not have an

111-13

Table 111-3

XNS Level One Summary

XNS Level One A B C I N

Internet Datagram F F N F F
Protocol

Definition of Symbols:

A = Advanced Computer Corporation B = Bridge
Communications

C = 3Com Corporation I = Interlan
N = Network Research Corporation F = Full

Implementation
P = Partial Implementation N = No

Implementation

111-12

Currently. there is no device driver software for the

Berkeley Unix 4.2 BSD operating system. However, by the time

this report is release device driver software for the

Berkeley Unix 4.2BSD operating system should be available.

Interlan and 3Com also have designed Ethernet

controller boards for the VAX 11/780, but they do not have

device driver software for the Berkeley Unix 4.2BSD

operating system. However, the Berkeley Unix 4.2BSD

networking facilities contain device driver software for the

3Com and the Interlan Ethernet controller boards. An

interesting statement about the performance of the 3Com and

the Interlan controller boards said they both have identical

throughput characteristics with Berkeley Unix 4.2BSD, but

neither have proven entirely satisfactory (31:12). The

reasons being: 1) data has to moved between the VAX Unibus

and the 3Com Ethernet controller board a word at a time and

2) the Interlan Ethernet controller board uses a significant

amount of +5 volt power and it does not perform the Ethernet

CRC checksum.

XNS Levels' Qn A" Two. Level one of the XNS

architecture structure contains the network layer function

of the ISO model concerned with internetworking systems (See

Table 111-3). Level two of the XNS architecture structure

contains the transport layer functions of the ISO model (See

Table 111-4). Specifications for XNS level one and XNS

level two are outlined in the Internet Transport Protocols

document (54).

111-ll

area networking functions of the ISO model (See Table

111-2). This research is interested in an XNS network

environment with the Ethernet providing level zero service,

because this is one of the requirements of the OSD P&FC

office. The Ethernet Version 1.0 specification outlines the

protocols for connecting to and establishing an Ethernet

network (16).

Table 111-2

XNS Level Zero Summary

XNS Level Zero A B C I N

Ethernet Specification F F F F F

Definition of Symbols:

A = Advanced Computer Corporation B = Bridge
Communications

C = 3Com Corporation I = Interlan
N = Network Research Corporation F = Full

Implementation
P = Partial Implementation N = No

Implementation

Bridge Communications and Network Research Corporation

have designed Ethernet controller boards and device drivers
I

for the VAX 11/780 with the Berkeley Unix 4.2BSD operating

system.

Advanced Computer Communications (ACC) has also

designed an Ethernet controller board for the VAX 11/780.

II1-10

A

network server maintains the routing table used by internet

routers by implementing a protocol similar to the XNS

Routing Information Protocol.

The OSD P&FC office requires the interfacing of a VAX

11/780 with Xerox office automation equipment. This

interfacing would allow desired services between the VAX

11/780 and Xerox office automation equipment to occur such

as electionic filing, mailing, and printing. The protocols

that perform these services in a Xerox network environment

are in level four of the XNS architecture structure. The

XNS levels of protocols below XNS level four would also have

to be implemented to meet the requirements of interfacing

the VAX 11/780 with Xerox office automation equipment,

because the protocols that compose the XNS architecture are

layered.

A level by level discussion of which protocols of the

XNS architecture structure have, or have not, been

implemented for the VAX 11/780 is presented. This

discussion is based on the information gathered from the

Ethernet product line search, and the networking information

presented on the Berkeley Unix 4.2BSD operating system.

The implementation of TCP/IP on the VAX 11/780 is also

discussed, because this is another requirement of the OSD

P&FC office.

NSLevel Zero. Level zero of the XNS architecture

structure contains the physical, data link, and the local

111-9

the networking facilities' SOCK_STREAM socket type. The

User Datagram Protocol (UDP) is a specification for a

datagram delivery service. UDP uses the networking

facilities' SOCK_DGRAM socket type to accomplish this task.

The Berkeley Unix 4.2BSD operating system also provides

support for the DARPA application layer protocols SMTP,

TELNET, and FTP (4). The Simple Mail Transfer Protocol

(SMTP) provides an electronic mail service. The TELNET

protocol provides a virtual terminal service. The File

Transfer Protocol (FTP) performs electronic filing on an

internet.

Ethernet a =NS w Support. The Berkeley Unix

4.2BSD networking facilities contain software for connecting

a VAX 11/780 to an Ethernet, and two network servers based

on the XNS protocols.

The networking facilities contain hardware interface

layer software for three 10Mb/s Ethernet controller boards.

The three 10Mb/s Ethernet controller boards are the 3Com

3C300. the Interlan NII010A, and the Proteon proNET

(33:13-14).

The network facilities network servers that are based

on XNS protocols are called "couried" and "routed" (34:34).

The "couried" network server provides a remote procedure

capability using the XNS Courier Protocol. The "routed"

111-8

information about a hardware device such as the hardware

device name, the local network host number where the

hardware device resides, and the network address of the

interface routine to a hardware device. Delivery and

reception of packets from a hardware device are managed by

information in the hardware interface layer data structure

such as a queue of packets to transmit and a queue of

packets received from a hardware device. The hardware

interface layer data structure also stores information

pretaining to the hardware device network operations such as

the number of packets received, the number of packets

transmitted, the number of collision packets, the number of

damaged packets sent, and the number of damaged packets

received at a hardware device. Berkeley Unix 4.2BSD has a

routine that takes the information stored in the hardware

interface layer data structure about a hardware device's

network operations and provides various statistics on the

network operations of the hardware device.

DARPArtocols Support. The Berkeley Unix 4.2BSD

provides support for the DARPA standard Internet protocols

IP, ICMP, TCP, and UDP (34:31). The Internet Protocol (IP)

is a specification for the network layer functions of the

ISO model. The Internet Control Message Protocol (ICMP) is

the control protocol associated with IP that is used to

convey error and status information to Internet users (5).

The Transmission Control Protocol (TCP) is a specification

for the transport layer functions of the ISO model that uses

111-7

manipulated by the user interface routines of the networking

facilities (18:9).

The Communication Prot l Lae. The

communication protocols layer manages the data structure

that is associated with the use of a particular protocol

(for example, the XNS Internet Datagram Protocol). The data

structure that defines the use of a protocol contains four

pieces of information; the protocol identification,

protocol-to-protocol communications, user-to-protocol

communications, and protocol utility routines (18:12). The

protocol identification contains information such as the

socket type that supports a protocol, the protocol

identification number, and the protocol family (i.e XNS).

The protocol-to-protocol communications data define those

routines used to pass information to protocols above and

below a given protocol. The user-to-protocol communications

define the routine used to interface with the socket type a

protocol is using. The protocol utility routines define the

timing mechanisms used to determine the state of a protocol.

tHardware interface L . The hardware

interface layer is responsible for encapsulation and

deencapsulation of any low level header information required

to deliver a message to its destination, in addition to
6

manipulating a hardware device (18:13). The hardware

interface layer manages the data structure associated with

using a hardware device on a network system. The hardware

interface layer data structure contains network addressing

111-6

6-' -

concept of a reliable datagram service for the delivery of

* ''I information. The SOCKSEQPACKET socket provides a reliable

sequential transmission of information. These socket types

can be used to support the implementation of protocols that

make up the network and transport layers of a network

structure.

The Berkeley Unix 4.2BSD networking facilities have

routines designed to assist in the manipulation of sockets

(9:29-31). There are routines that allow the creation and

naming of sockets. Routines exist that provide listening

and answering services for sockets. Routines exist that

establish connections between sockets. Routines exist that

provide a means of sending and receiving information to/from

sockets. Finally, routines exist to disconnect one or both

sides of a connection between sockets.

Internal truJtxr. The internal structure of the

networking facilities provided by Berkeley Unix 4.2BSD is

outlined in the 4.2BSD Networking Implementation Notes

document (18). This document specifies that the internal

structure of the networking facilites are divided into three

layers; the highest layer called the socket layer, the

middle layer called the communication protocols layer, and

the lowest layer called the hardware interface layer.

Socket Layer. The socket layer is composed of

those data structures used to manage sockets and their

interconnections. Most of the information stored in the

socket management data structures are supplied and

111-5

0

The Berkeley Unix 4.2BSD operating system also contains

implementations of the protocols that make up the Department

of Defense (DOD) standard for internetworking as outlined by

the Defense Advance Research Projects Agency (DARPA). The

DOD internetworking protocols were implemented using the

networking facilites of the Berkeley Unix 4.2BSD operating

system.

Berkeley Unix 4.2BSD also contains software

Iiaplementations related to connecting a VAX 11/780 to an

Ethernet, as well as protocols related to the XNS

architecture structure.

User Intface. The user interface provided by the

Berkeley Unix 4.2BSD networking facilities is centered on

the concept of a socket. A socket is a bidirectional

endpoint of communications which is "typed" by the semantics

of the communications it supports (18:8). Sockets are the

means by which information is exchanged between processes in

a network environment. Currently, Berkeley Unix 4.2BSD

networking facilities define five socket types; they are

SOCK_DGRAM, SOCK_STREAM, SOCKRAW, SOCKRDM, and

SOCKSEQPACKET (9:28). The SOCKDGRAM socket uses the

concept of a datagram delivery of information. The

SOCKSTREAM socket uses the concept of a virtual circuit for

the delivery of information. The SOCKRAW socket allows

direct access to the network layer functions without a

scheme at the transport layer to ensure the reliable

transmission of information. The SOCKRDM socket uses the

111-4

S%

Ethernet product line, and 3) Ethernet product lines specify

interfacing of other systems with XNS networks, thereby

revealing possible future additions of other systems to the

OSD P&FC network. The Ethernet product line literature

search information is located in Appendix A.

The literature search on the networking facilities of

the Berkeley Unix 4.2BSD operating system is in four areas:

1) the networking facilities of the Berkeley Unix 4.2BSD

operating system, 2) any sofware support for TCP/IP, 3) any

software support for the Ethernet, and 4) any

implementations of the XNS protocols.

This chapter then presents an overview of the

implemented XNS and TCP/IP protocols.

The chapter concludes with a summary of the XNS and the

TCP/IP protocols that have, or have not, been designed and

implemented on the VAX 11/780 with Berkeley Unix 4.2BSD.

BeklyUnix 4.2BSD0eaigSse

The XNS protocol structure that must be designed for

the VAX 11/780 to enable it to interface with Xerox

networking devices at the application layer will be under

the Berkeley Unix 4.2BSD operating system, as required by

the OSD P&FC office. The Berkeley Unix 4.2BSD operating

system defines a framework for supporting network

applications. The networking facilities available under

Berkeley Unix 4.2BSD have a user interface and a documented

internal structure to assist network designers in the design

and implementation of network systems.

111-3

Table III-i

XNS Architecture Structure

Level Four (Application Layer)

Filing Protocol
Mailing Protocol
Printing Protocol
Other Applications Support Protocols

Level Three (Presentation and Session Layers)

Courier Protocol
Bulk Data Transfer Protocol

Level Two (Transport Layer)

Sequenced Packet Protocol
Echo Protocol
Packet Exchange Protocol
Error Protocol
Routing Information Protocol

Level One (Network Layer)

Internet Datagram Protocol

Level Zero (Data Link and Physical Layers)
*!

Ethernet Specification

1

. III-2

S

III. Prtcl Implementation Sau

Tntroduction

As outlined in the previous chapter, a layered

architecture structure is required for networking with Xerox

Network Systems. All five levels of the Xerox Network

System (XNS) protocols must be developed on the VAX 11/780

to meet the requirements specified by the Office of the

Secretary of Defense (OSD) Program and Financial Control

(P&FC) office (See Table III-1). The requirements specified

by the Program and Financial Control office involves the

interfacing of the VAX 11/780 with Xerox office automation

equipment at the application layer.

I)' A literature search was performed to determine which

communications protocols of XNS have already been designed

and implemented for the VAX 11/780 with the Berkely Unix

4.2BSD operating system, the system the OSD P&FC office is

acquiring. The results of the literature search is composed

of two parts: 1) information on Ethernet specific product

lines, and 2) information on the networking facilities of

the Berkeley Unix 4.2BSD operating system.

A literature search of Ethernet product lines is

performed for three reasons: 1) the OSD P&FC office has an

Ethernet at level zero of their Xerox network environment,

2) most implementations of the XNS protccols are part of an

II

1-W %7 ". '-L -k

research was also performed to determine the extent that

TCP/IP was implemented on the VAX 11/780.

The next chapter reviews information gathered during a

literature search that was performed to determine which

protocols of the Xerox Network System and TCP/IP have

already been implemented for the VAX 11/780 using the

Berkeley Unix 4.2BSD operating system.

11-41

implementation for Lhe Berkeley Unix 4.2BSD operating

system. However. they point out that their implementation

is in the C programming language. This should make it

easier to transport their implementation to systems with the

C programming language, such as the VAX 11/780 with the

Berkeley Unix 4.2BSD operating system.

ACC has a full implementation of the XNS level one

protocol. They also have a partial implementation of the

XNS level two protocols. ACC does not have a full

implementation of the Routing Information Protocol and the

Error Protocol, which are part of the XNS level two

protocols. They also have not implemented the Packet

Exchange Protocol, another XNS level two protocol. ACC's

implementations of the XNS level one and the XNS level two

protocols should be available for the Berkeley Unix 4.2BSD

operating system, by the time this report is released.

LS Level Three. Level three of the XNS architecture

structure contains the session layer and the presentation

layer functions of the ISO model (See Table 111-5).

Specifications for XNS level three are outlined by the XNS

Courier Protocol (55) and the XNS Bulk Data Transfer

Protocol (56).

ACC has a partial implementation of the XNS level three

protocols, with a full implementation of the Courier

Protocol and no implementation of the Bulk Data Transfer

Protocol. Currently. their implementation of XNS level

three is only for Unix V7 operating systems. However, they

111-14

n

should have an implementation for the Berkeley Unix 4.2BSD

operating system by the time this report is released.

Table 111-5

XNS Level Three Summary

XNS Level Three A B C I N

Courier Protocol F N N N N
Bulk Data Transfer N N N N N
Protocol

Definition of Symbols:

A = Advanced Computer Corporation B = Bridge
Communications

C = 3Com Corporation I = Interlan
N = Network Research Corporation F = Full

Implementation
P = Partial Implementation N = No

Implementation

Berkeley Unix 4.2BSD has a partial implementation of

the XNS level three protocols, with a full implementation of

the Courier Protocol and no implementation of the Bulk Data

Transfer Protocol. The Courier Protocol implemented as part

of the Berkeley Unix 4.2BSD networking facilities is offered

as a network server. However, the Berkeley Unix 4.2BSD
6

networking facilities do not implement XNS level one and XNS

level two in support of the Courier Protocol network server.

XN Level Four. Level four of the XNS architecture

structure contains the protocols and standards found in the

111-15

application layer of the ISO model (See Table 111-6) . The

major application services of the XNS architecture structure

C are electronic filing, printing, and mailing. These are the

same application services the OSD P&FC office would like the

VAX 11/780 to interface with their Xerox network. Each

major application service is composed of protocols and

standards for implementing the service. The XNS level four

also has application services such as a service for locating

I devices and other application services on a network, and a

service for verifying user access to devices and application

services on a network.

Table 111-6

XNS Level Four Summary

XNS Level Four A B C I N

EFiling Protocol P N N N N
Mailing Protocol N N N N N
Printing Protocol N N N N N
Other Applications N N N N N
Support Protocols P N N N N

Definition of Symbols:

A = Advanced Computer Corporation B = Bridge
S Communications

C = 3Com Corporation I = Interlan
N = Network Research Corporation F = Full

Implementation
P =Partial Implementation N =No

Implementation

111-16

An effort was made to acquire the protocols and

standards of the electronic filing service. This was done

for two reasons: 1) this is one of the services the OSD

P&FC would like a VAX 11/780 to perform with Xerox network

devices and 2) the electronic filing service is the basis

for transmitting information in a network environment.

Xerox, however, has decided that their electronic filing

service protocols and standards are still in a period of

evolution and are not stable enough for release to the

public. The only major application service released to the

public by Xerox is their electronic printing service.

The Xerox electronic printing service was released to

the public in a package called Interpress. The Interpress

package contains the protocols and standards of the Xerox

electronic printing service, other application layer

protocols and standards used by the electronic printing

service, and all the protocols of the XNS levels' one

through three. The protocols and standards of the

electronic printing service are in these documents: the

Interpress 82 Reader's Guide (52), the Introduction to

Interpress (BY), the Interpress Electronic Printing Standard

(57), the Character Code Standard (58), and the Printing

Protocol (62). The other application layer protocols and

standards used by the electronic printing service are the

Time Protocol (60), the Authentication Protocol (61), the

Clearinghouse Entry Formats (63), and the Clearinghouse

Protocol (59).

111-17

. ...6 " ; " / _ " - - • _ ' . . ' ' -

ACC has a partial implementation of the Clearinghouse

Protocol. They have used this implementation, along with

the other XNS protocols they have implemented, to design

their own electronic filing service (2). In fact, Xerox has

asked them to develop an interpretor which is to be used for

file transfers between the Xerox file service and the ACC

file service.

TCP/IP Requirement. The OSD P&FC office has as a

requirement the use of the DARPA TCP/IP protocols at the

network and transport layers of the ISO model. 3Com has

implemented TCP/IP on the VAX 11/780. They also have a

partial implementation of the DARPA protocols for file

transfer, virtual terminal service, and electronic mailing.

However, the Berkeley Unix 4.2BSD networking facilities have

a full implementation of the DARPA protocols TCP, IP, UDP,

and ICMP. The Berkeley Unix 4.2BSD networking facilities

also provides support for the DARPA application layer

protocols FTP, SMTP, and TELNET.

Summr

The literature review performed reveals that XNS

levels' zero through two are implemented for the VAX 11/780

with the Berkeley Unix 4.2BSD operating system. It also

reveals that Berkeley Unix 4.2BSD has a full implementation

of TCP/IP, along with the UDP, ICMP, FTP, SMTP, and the

TELNET DARPA protocols.

The literature review also reveals that there are not

111-18

• . .. °I

W V

full implementations of XNS level three and the electronic

filing protocol of XNS level four. The electronic filing

protocol uses XNS level three, hence a full implementation

of XNS level three is required. The only protocol of XNS

level three that has not been implemented is the Xerox Bulk

Data Transfer Protocol. Therefore, the next chapter

presents a general design of the Xerox Bulk Data Transfer

Protocol.

F.

11I-19

IV. General Desgn Q A XAM Protocol

Introduction

The full range of XNS protocols that support and

provide the electronic filing, printing, and mailing

services on a Xerox Network System have not been implemented

for the VAX 11/780 with the Berkeley Unix 4.2BSD operating

system. However. some of the protocols that make up the XNS

network structure have been designed and implemented for the

VAX 11/780 with the Berkeley Unix 4.2BSD operating system,

as outlined in the previous chapter (See Tables 111-2 thru

111-6). The XNS architecture structure is layered,

therefore it requires the lower levels of the XNS structure

to exist before higher levels, such as electronic filing,

printing, and mailing, can be implemented.

The previous chapter pointed out that the protocols

which compose the XNS levels zero through two have been, or

will soon be, designed and implemented for the VAX 11/780

with the Berkeley Unix 4.2BSD operating system. It was also

pointed out that the Advanced Research Corporation (ACC) had

a partial implementation of the XNS level three protocols.

Level three of the XNS architecture structure is composed of

two protocols, the Courier Protocol (55) and the Bulk Data

Transfer Protocol (56). ACC has a full implementation of

the Courier Protocol, but no implementation of the Bulk Data

Transfer Protocol.

IV-l

Level four of the XNS structure, that includes

electronic filing, printing, and mailing functions, are

dependent directly on the use of the Courier Protocol and

the Bulk Data Transfer Protocol of XNS level three.

Therefore, a design and an implementation of the Bulk Data

* Transfer Protocol for the VAX 11/780 with the Berkeley Unix

4.2BSD operating system is required, if XNS level four

applications are to be implemented as desired by the Program

and Financial Control office.

This chapter begins with a brief overview of the

Courier Protocol, because it is the means by which

communications is specified by the Bulk Data Transfer

Protocol. Also, an overview is presented on the Xerox Bulk

Data Transfer Protocol. Finally, a general design of the

Xerox Bulk Data Transfer is discussed.

60 4The Xerox Courier Protocol provides session and

presentation support, as outlined by the ISO model, for

application protocols on a Xerox network. The Courier

* Protocol provides this support through the use of remote

procedure calls. Remote procedure calls allow network users

to execute programs located on remote host systems on a

0 Xerox Network System. The Courier Protocol facilitates the

construction of distributed systems by defining a single

request/reply or transaction discipline for an open-ended

0 set of higher-level applications protocols (55:1).

IV-2

Courier is designed to assist developers of network

services. A network service designer can view a network

service as a program that can be accessed by any remote host

system on a Xerox Network System. The network service

program is composed of procedures that perform primitive

functions of a network service. This is analogous to a

program developed in a high level language that is composed

of subprograms which perform functional tasks.

For example, an electronic printing network service

program might be composed of procedures that spool a file to

a printer, delete a file from a spooled printer queue, and

change the priority of files waiting to be printed in a

spooled printer queue. The electronic printing network

service is advertised as a complete service. A print

service request is carried out for a user of a network by

issuing the appropriate remote procedure calls to the

electronic printing program located at a remote printer.

The Courier Protocol is composed of three layers, the

block stream, the object stream, and the message stream (See

Figure IV-l). The block stream layer defines how the

Courier message and data stream is demarcated and

transmitted between established sockets on a Xerox Network

System. The object stream layer defines the data types that

Courier support. Some of the data types Courier support are

cardinal, string, integer, array, and record. The message

stream defines the message types that can be used for

communication between requestors and providers of services

on a Xerox Network System.

IV-3

- ~ ~A

Layer One MESSAGE STREAM
(Call. Return. Abort. etc.)

Laye Two OBJECT STREAMLaye Two(Boolean. Cardinal. etc.)

LayerThree BLOCK STREAMLayerThree(Block)

Figure IV-l. The Courier Layered Structure

Source: 55:3

Courier. like the XNS architecture structure, has a

layered structure where the higher layers depend on the

lower layers. Courier layer three (the message stream) uses

the constructs provided by Courier layer two (the object

stream) to create calls to and interpret returns from remote

procedures. Courier layer one (the block stream) ensures

that Courier layer two (object stream) information is

transmitted between host systems on a Xerox Network System.

The Courier Protocol uses the Xerox Sequenced Packet

Protocol (54) for the reliable transmission of block stream

data.

Since, ACC has already implemented the Courier

Protocol, the detail specification of the object stream and

the block stream layers are not discussed. A detailed

discussion of the object stream and the block stream would

be needed if a design and an implementation of Courier were

being presented. However, what is discussed in detail is

Courier layer three, the message stream.

Courier defines four message types: the call message,7

IV-4

the reject message, the return message, and the abort

message (55:23). Requestors of network services uses the

call message to initiate the execution of remote procedures

on a Xerox Network System (See Figure IV-2). The response

to issuing a call to a remote procedure is returned by

either a reject message, a return message, or an abort

message. The Courier Protocol specifies that a user process

can only have one call message outstanding at any given time

(55:24).

Active Passive
System

CALL procedure, arguments Element

(caant~ ________________________ Remote
RETURN results

ABORT error, arguments

Figure IV-2. The Courier Model

Source: 55:2

The call message has a structure that is composed of a

program number. a version number, a procedure value, and

procedure arguments. The program number specifies the

network service program a requestor wants to execute. The

version number specifes the version of a network service

program a requestor wants to execute. The procedure value

specifies the procedure of the network service prcgram a

requestor wants to execute. The procedure arguments specify

the arguments a requestor is supplying to the procedure of

IV-5

the network service program. All of the procedure arguments

passed to a remote procedure must use the data typing

specified for the remote procedure by the network service

program.

The reject message is used by a network service program

to denote that a call to a remote procedure was rejected.

The return of a reject message from a network service

program means the execution of a remote procedure was not

attempted. The reject message specifies five standard

reasons why a call to a remote procedure was rejected

(55:25-26):

1. A program number specified by a call message

does not designate an existing network service

program.

2. A version number specified by a call message

is not implemented by a network service

program. If this reject message is returned,

the network service program also returns to

the caller of a remote procedure the lowest

and the highest version of the network service

program it supports.

3. A call message sent to a network service

program specified a procedure not supported by

the network service program.

IV-6

4. A call message does not have the expected

procedure arguments for a remote procedure.

5. For reasons other than the ones discussed

above which prevent a network service program

from initiating the execution one of its

procedures.

The return message specifies the results from executing

a remote procedure call. A return message is sent only when

a remote procedure executes successfully. The results

returned by a remote procedure are outlined by a network

service program. just as the procedure arguments to a remote

procedure are outlined by a network service program. The

results returned by a remote procedure are data typed using

the formats specified by Courier layer two, the object

stream.

The abort message is returned when an error occured

during the execution of a remote procedure. The network

service program defines appropriate error conditions for

each procedure that composes a network service program.

Each error condition is given a numeric error value, which

is used to signal the occurrence of a particular error.

Therefore, the abort message returns an error value that is

used to decoded the error condition that occurred during the

execution of a remote procedure. The abort message may in

addition to returning an error value, also return

parameters. These parameters are usually the procedure

IV-7

arguments passed to a remote procedure, via a call message,

that caused the generation of an abort message.

The Xerox Bulk Data Transfer Protocol is the means by

which application services on a Xerox Network System, such

as file service and print service, transfer large amounts of

information. The Xerox Bulk Data Transfer Protocol

standardizes the mannner in which the sender and receiver of

bulk data make contact with one another; how bulk data is

demarcated when transfered on the Courier connection between

them; and how the transfer can be aborted; if necessary by

either party (56:35) .

This protocol is an extension of the Courier Protocol.

r The Courier Protocol is designed for calling and receiving

status messages, or return arguments, from remote

procedures. En other words, it is designed only for

initiating a network service, such as electronic filing or

printing. The Courier Protocol is not designed for the

transfer of the actual bulk data that an electronic filing

or printing network service requires. Xerox has specified

how this task is performed between system elements on a

Xerox Network System in the Xerox Bulk Data rransfer

Protocol.

Like the Courier Protocol, the Xerox Bulk Data Transfer

Protocol is designed to assists designers of network

services. The Bulk Data Transfer Protocol assisc designers

IV-8

D-fl52 953 INTERFRCING THE VAX 11/788 USING BERKELEY UNIX 42BSD 2/2
AND ETHERNET BASED X..(U) AIR FORCE INST OF TECH
WRIGHT-PRTTERSON BFB OH SCHOOL OF ENGI.. E BERNARD

UNCLRSSIFIED DEC 84 AFIT/GCS/ENG/84D-4-VOL-i F/G 9/2 NLEEmnEEEmhhhEEI
mmmmEEEEEmmmEI
llll~lEllllEEI
EIIIEIIEEEEEEE

X010

lO 1111202

0 1112-

1111 iiiIL25II1.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

of network services by providing a standard dialogue between

system elements on a network that participate in the

transfer of bulk data. The Xerox Bulk Data Transfer

Protocol views the transfer of bulk data requires

communication between three system elements: the initiator,

the sender. and the receiver.

The initiator receives and acts upon a request for the

transfer of bulk data. For example, a user on a workstation

* requesting a file be sent to a print server would be

serviced by an initiator. The sender sends bulk data

requested to a specified destination. For example, a file

service sending a file to a designated print service. The

receiver accepts bulk data sent to it and acts upon it. For

- - -example, a print service receiving bulk data from a file

server that is to be printed.

Depending on where the initiator, the sender, and the

receiver of bulk data is located on a network, and the bulk

data request itself, determines the type of bulk data

transfer required. The Bulk Data Transfer Protocol supports

three forms of bulk data transfers: third-party, immediate,

and null (56:36). A third-party transfer is performed when

* the bulk data to be transmitted is not located at the

initiator host system, and it is not destined to be sent to

the initiator host system. Therefore, the communications

required to transmit the bulk data is between three host

systems, the initiator host, the sender host, and the

receiver host.

IV-9

An immediate transfer is performed when the bulk data

to be transmitted is either located at, or destined to be

sent to the host system that received a request for a bulk

data transfer (i.e. the initiator host system). The

communications required to transfer the bulk data is between

two host systems, the initiator host system and either the

sender host or the receiver host.

A null transfer is performed when a bulk data request

requires that no data is actually sent. For instance, a

request to create an empty file on a file service device.

The communcations for this type of bulk data transfer is

between two host systems, the initiator host and either the

sender host or the receiver host.

The communications between the initiator, the sender,

and the receiver is carried out mainly through the use of

Courier remote procedure calls. The initiator determines

the type of bulk data transfer that is needed for each bulk

data request it receives, and issues the appropriate remote

procedure call(s) to the sender and/or the receiver. The

sender has a remote procedure called Produce, which

retrieves the bulk data requested at a system element and

transmits it to another system element as designated by the

initiator. The receiver has a remote procedure called

Consume, which accepts bulk data from a system element

designated by the initiator.

The Produce and Consume remote procedures are not

generalized procedures that can be used for all bulk data

IV-10

transfers. These two remote procedures are application

specific for each network service application, just as the

application specific initiator of a network service is. The

Xerox Bulk Data Transfer Protocol outlines the functions the

initiator of a network service, and the application specific

remote procedures, Produce and Consume, must perfom to

ensure a standard and orderly exchange of bulk data.

General Designf h Xerox Da Data Protocol

The previous section gave the motivation for the use of

the Xerox Bulk Data Transfer Protocol, that being to assist

network designers in the transfer of bulk data between

system elements on a network system. This is achieved by

outlining communication standards between system elements

that participate in the transfer of bulk data. This section

concentrates on a general design of the Xerox Bulk Data

Protocol. The general design maps out the communications

among the initiator of a bulk data request, the Produce

remote procedure, and the Consume remote procedure.

The general design of the Xerox Bulk Data Transfer

Protocol requires the use of a technique that can represent

the communications among the initiator of a bulk data

request, the Produce remote procedure, and the Consume

* remote procedure. The Structured Analysis and Design

Technique (SADT) (15. 48, 50), Data Flow Diagrams (44:139),

and the Hierarchy Plus Input Process Output (HIPO) (44:48)

0 technique are all techniques that can be used to represent

the relationships between components of a system.

IV-11

%%6

The general design of the Xerox Bulk Data Transfer

Protocol is presented using the Structured Analysis and

Design Technique. This general design technique was chosen

for three reasons: 1) it provides a top down design

structure, 2) it represents the design graphically, while

highlighting the components of a design, and 3) it shows the

relationships between objects and activities of a system

(44:134).

The general design presented can be used as a blueprint

for implementing support for bulk data transfers required by

application services on a Xerox Network System. The full

Bulk Data Transfer Protocol must exist on each host system

on a Xerox network that can initiate, produce, and consume

an application service's bulk data.

Host systems on a Xerox network that only retrieve an

application service's bulk data at the local host system,

and sends it to a designated host system on the network,

need only implement the Produce remote procedure of the Bulk

Data Transfer Protocol.

Host systems on a Xerox network that only accept bulk

data sent to it, need only implement the Consume remote

procedure of the Bulk Data Transfer Protocol.

Host systems on a network that can produce and consume,

but not initiate, an application service's bulk data must

implement the Produce and the Consume remote procedures of

the Bulk Data Transfer Protocol.

* An application service uses its application specific

IV- 12

Bulk Data Transfer Protocol for the transmission of

' .N '~information that require a bulk data transfer. The

application specific Bulk Data Transfer Protocol can be

viewed as a complete system, where a bulk data request is

input to the system, and the result of the bulk data request

is the output of the system (See Figure IV-3). The heart of

the Bulk Data Transfer Protocol is the communications and

data transfers among the initiator of a bulk data request,

the Produce remote procedure, and the Consume remote

procedure (See Figure IV-4).

2M InitiatL. The initiator receives a request for

performing a bulk data transfer (See Figure IV-5). The bulk

data request must be parsed to extract information such as

the name, the request type, and the destination of the bulk

data (See Figure IV-5 SADT All). This information is used

to find the source and the sink (destination) addresses of

the host systems that will participate in the bulk data

transfer (See Figure IV-5 SADT A12 and SADT A13). The

initiator address, the source address, the sink address, the

request type, and the bulk data name are used to initiate

the appropriate type of transfer needed to transmit the bulk

data (See Figure IV-5 SADT A14).

The type of bulk data transfer used depends on where

the bulk data is located, where it is destined, and the

request type of the bulk data request (See Figure IV-6 SADT

A141). A null bulk data transfer is used when a bulk data

IV-13

'6 " "° " " -, .'". ' '

t

I
0

I. I

I
i

F cj~

~0W2
*
*

C.) *~ U

.-.. ~. ..-- W2 i
ii :4

Lw ~ Id

r~4
B II

I..

9.

£
1 0
U

II 4

it 0

9.

4
0 _

i

I

Iv- 14

I
*

'Iii
V
-

I

I .4'. 4 j
I

iw~s 4

£51
1

4; I

2
4,

U
Il
I

I I
a

Iiii aS

4

40

4 4

-

IV-15

~

It *
IV 131

949

'Ii

iv-()

!ii ai

i

* -,

El i

'a 3IV--?

. . 3... S:. F" / - ... i I I 1

request type specifies the creation or emptying of a file,

and the bulk data is not located at the initiator address

(See Appendix B SADT A143). An immediate bulk data transfer

is used when the source address or the sink address of the

bulk data is the same as the initiator address (See Figure

IV-6 SADT A.144). A third-party bulk data transfer is used

when neither the source address nor the sink address is the

same as the initiator address (See Figure IV-6 SADT A145).

A local bulk data transfer is used when the source address

and the sink address of the bulk data is the same as the

initiator address (See Figure IV-6 SADT A142).

The Xerox Bulk Data Transfer does not address the issue

of the local transfer of bulk data. It probably does not

address this issue because only one system element is

involved, that system being the host system where the bulk

data request was received. Therefore, there is no

requirement for communication between system elements of an

application service to achieve the data transfer. The bulk

data transfer takes place using an application service

procedure at the local host system, without the need to use

a Courier connection for communication and data transfer.

However. in the case of the null, immediate, and

third-party bulk data transfers, a Courier connection is

used for communication and the transfer of bulk data among

the initiator, the Produce remote procedure, and the Consume

remote procedure. Once the type of bulk data transfer is

determined, communcation between the initiator, and the

IV-1 8

appropriate Produce and/or Consume remote procedures, is

carried out. This communication specifies the role(s) the

initiator has assigned to the Produce and/or Consume remote

procedures in order to accomplish a bulk data request.

The initiator can assign one of four roles to the

Produce and the Consume remote procedures: null, immediate,

passive, and active. The null role specifies that the

remote procedure is to participate in a null transfer of

bulk data. The immediate role specifies that the remote

procedure is to participate in an immediate transfer of bulk

data. The active or passive role specifies that the remote

procedure is to participate in a third-party transfer of

bulk data. The Produce and the Consume remote procedures

must honor all four roles an initiator can assign to them,he
if they are to comply with the Bulk Data Transfer Protocol

(56:41).

BU" Transfer. A null role is assigned to a

Produce remote procedure when it is decided that a null

transfer is to be used, and the bulk data request is for a

task such as creating a file (See Appendix B SADT A1431). A

null role is assigned to a Consume remote procedure when it

is decided that a null transfer is to be used, and the bulk

data request is for a task such as emptying a file (See

Appendix B SADT A1432).

Immeia Transfer. An immediate role is assigned

to a Produce remote procedure when it is decided that an

immediate transfer is to be used, and the destination of the

IV-19

bulk data is the initiator address (See Appendix B SADT

A1441). An immediate role is assigned to a Consume remote

procedure when it is decided that an immediate transfer is

to be used, and the destination of the bulk data is not the

initiator address (See Appendix B SADT A1442).

ThirdPaty TraTransfer. The initiator calls both

the Produce and the Consume remote procedures simultaneously

when a third-party transfer is used to transmit bulk data

(See Appendix B SADT A145). The source address of a

third-party transfer is used to call the Produce remote

procedure. The sink address of a third-party transfer is

used to call the Consume remote procedure. The initiator

decides the complimentary passive or active roles that the

Produce and the Consume remote procedures are to perform.

The Prduce Remote P. The Produce remote

procedure communicates with two system elements. It

directly communicates directly with the initiator, and

indirectly with the Consume remote procedure (See Figure

IV-4). The initiator activates the Produce remote procedure

supplying arguments. The main argument supplied defines the

role Produce is to play in a bulk data transfer (See Figure

IV-7 SADT A2). The bulk data located at the Produce host

system is retrieved, when Produce is to participate in an

immediate or third-party transfer (See Figure IV-7 SADT

A21). The Produce remote procedure returns the status of

performing its assigned role via the initiator Courier

connection.

IV-20

bulk data. The first process, called SendData (See Appendix

E-55), sends bulk data on a connection established by a

Courier call message. The second process, called AcceptData

(See Appendix E-2), receives bulk data from a connection

established by a Courier call message. These two processes

are not only used by the initiator system, but also the

Produce remote procedure system, the Consume remote

procedure system, and the Bulk Data system.

The Produce and Th Consume Sysem. The

Produce and the Consume remote procedures transfer bulk data

either with each other. or with the initiator. The roles

the initiator assigns to the Produce and the Consume remote

procedures determine the source and the destination systems

in a bulk data transfer. The initiator communicates these

roles along with other arguments, to the Produce and the

Consume remote procedures via its interface with the Produce

and the Consume server programs (43:3-1).

A detailed design process, called ProduceServer (See

Appendix E-44), performs the function of interfacing with

the initiator on behalf of the Produce remote procedure. A

detailed design process, called ConsumeServer (See Appendix

E-45), performs the function of interfacing with the

initiator on behalf of the Consume remote procedure. The

ProduceServer and the ConsumeServer processes decapsulate

Courier data typed (55:8) arguments sent to the Produce and

the Consume remote procedures by Courier call messages.

After the arguments are decapsulated into the data types

V-7

," , - a . . . - "in U ,,-,nlm um~nln ,nm n/Iminm ww ,h1

only difference being a detailed design process used to

clarify how the initiator's host address is generated, while

in the SADT general design reflects the need for the

information. The lower level processes that complete the

detailed design of the initiator also parallel the lower

level activities specified in the SADT general design of the

initiator.

The SADT general design of the initiator's

communications with the Produce and the Consume remote

procedures is specified by a number of activities (See

Appendix B, SADTs, A14311, A14312, A14322, A14411, A14413,

A14422. A1452. A1453, and A1455). The detailed design of

the initiator produced two common processes that is used for

communications with the Produce and the Consume remote

procedures. The first process, called SendConnectMsg (See

Appendix E-54), is used to send remote procedure calls to

the Produce and the Consume remote procedures. The second

process, call RecStatusMsg (See Appendix E-47), is used to

receive the response from a remote procedure call to the

Produce and the Consume remote procedures.

The transmission of the bulk data between system

elements is carried out by the use of the Xerox Sequenced

Packet Protocol. The SADT general design of the

transmission of bulk data specifies a number of activities

(See Appendix B, SADTs A14412, A14423, A23, A2412, A2422,

A32. A3312. and A3322). The detailed design of the

initiator uses two processes for transferring and receiving

V-6

PROJECTo XftS BULKC DATA ATH04s CAPT CRAN3 E.
TRANSFER PRTCOBERNARD, USAV

1xitiator

1.6

E../ F T

7 4
Pevaeflgquest, C.U4.at. FiAdDatm FLndData !nIt.Treaster

Address Source Sink

1.1J t. . .4 1.S

WHER21 A *Dattaequaeat. 3 ReqmiAetTp. C a DataNfe.. 0 - Sinktae

C *In~t.Address. F *Souarce~ddress, G - SoarCeStatus. M a SinkAddress
I *SinkStatus. J TransferStatus, L. a RaquaestStstuaa

Denotes the direction date Inforwation is (towinag

Denotes the direction control information is flowiing

Figure V-i. The Initiator Process

V-5

Send, the Receive, and the Cancel remote procedures. This

new system is referred to as the Bulk Data system, during

the rest of this chapter.

The detailed design of the Send, the Receive, and the

Cancel remote procedures can be carried out through the use

of the structure charts technique (44:60), the Jackson

method (44:153), or the Warnier mechanics method (44:159).

The detailed design of each of these systems are presented

using the structure charts (8, 64) design tool. Structure

charts are used because of its top down decomposition of

requirements specifications, such as SADT diagrams.

Structure charts are also used because its black box

approach to decomposition of high level requirements frees

the designer from having to worry about minute details

(44:61). This leads to detailed designs that can be used to

implement code in any high level language.

The Initiator ystem. The initiator controls

the actions performed during a transfer of bulk data, as

pointed out in the SADT general design. The initiator

controls the transfer of bulk data between the host system

that has the bulk data, and the host system where the bulk

data is destined. The main processes (See Figure V-l) that

compose the top level detailed design of the initiator are

modeled after the top level activities outlined in the SADT

general design of the initiator (See Appendix B-9). The

V-4

ImDl ementa ti on

" As mentioned earlier, an implementation is presented

for the Xerox Bulk Data Transfer Protocol. The

implementation is based on the SADT general design of the

Xerox Bulk Data Transfer Protocol. The implementation is

composed of two parts. The first part of the implementation

is a detailed design of the SADT general design. The second

part of the implementation is the code derived from

implementing the detailed design in a high level programming

language on a particular host system.

flaile Design Implementation. The SADT general

design presented in chapter four was used to implement a

detailed design of the Xerox Bulk Data Transfer Protocol.

The detailed desi., specfies how the initiator, the Produce

remote procedure, arid the Consume remote procedure perform

the activities specified for them in the SADT general

design. The detailed design also outlines in greater detail

how the communciations among the initiator, the Produce

remote procedure, and the Consume remote procedure are

carried out. An indepth design of the Send, the Receive,

and the Cancel remote procedures that are used to transfer

third-party bulk data is also presented.

The detailed design, like the SADT general design, has

three major systems: the initiator, the Produce remote

procedure, and the Consume remote procedure. In addition to

these three systems, the detailed design has formally

recognized one more system. This system is composed of the

V-3

Still another bulk data service might support Clearinghouse

service applications (59). The communcations required to

transfer bulk data between host systems in each of these

application services are the same, that being the

communciations outlined in the Xerox Bulk Data Transfer

Protocol. However. the data typing of the bulk data being

transferred, and the operations that can be performed on the

bulk data are application specific.

This chapter presents an implementation of the Xerox

Bulk Data Transfer Protocol. The implementation is based on

the SADT general design of the Xerox Bulk Data Transfer

Protocol (See Appendix B). The emphasis of this

implementation is on the communications required to transfer

bulk data between host systems on a network. This

implementation does not address such issues as how the bulk

data is retrieved from a host file system, or the types of

operations that can be performed on the bulk data, such as

copying, renaming, or merging of the bulk data. These types

of issues are addressed in a given application service's

implementation of a bulk data service.

This chapter also outlines the test procedures used to

test the implementation of the Xerox Bulk Data Transfer

Protocol. The types of test procedures used to test the

implementation of the Xerox Bulk Data Transfer Protocol fall

into two categories, static testing and dynamic testing.

v-2

V. Tm~lementatinn And Tetn 2L the

Introduction

The Xerox Bulk Data Transfer Protocol provides

communications standards for the transmission of bulk data

between host systems on a network. The previous chapter

outlined the main structure of this protocol, that being the

communications among the initiator, the producer, and the

consumer of a bulk data request. The Xerox Bulk Data

j Transfer Protocol specifies that the communications among

these three system entities are accomplished by the use of

the remote procedure call facility of the Xerox Courier

Protocol (55). The Xerox Bulk Data Transfer Protocol also

specifies that the transmission of the bulk data between

system elements on a network is performed by the use of the

Xerox Sequenced Packet Protocol (54).

The lower layer protocols that compose the Xerox

network structure. such as the Ethernet Specification (16),

*the Internet Datagram Protocol (54) and the Internet

Transport Protocols (54), have only one implementation on

each host system. The Xerox Bulk Data Transfer Protocol,

* however. can be implemented a number of times on a host

system. For instance, one bulk data service might support

file service applications. Another bulk data service might

be implemented in support of print service applications.

V-1

Protocol presented mapped out the main structure of this

protocol. that being communications among three system

elements: the initiator, the Produce remote procedure, and

the Consume remote procedure. The initiator receives bulk

data requests, and determine the type of transfer needed to

accomplish a bulk data transfer. Once this is determined,

the Produce and the Consume remote procedures are contacted

via Courier remote procedure calls. Arguments are passed to

the Produce and the Consume remote procedures that allow

them to perform the roles assigned to them by the initiator.

The next chapter uses the general design presented for

the Xerox Bulk Data Transfer Protocol to develop a detailed

design of this protocol. The detailed design is then used

to implement the Xerox Bulk Data Transfer Protocol for the

VAX 11/780 with the Berkeley Unix 4.2BSD operating system.

IV-27

0l

, .. - -. - -. ? - --- -, . .- - -. - - - -. - -.i _ '-? ? ? i ..- - - ?. - .- , .--

connection established when Produce made the Courier remote

procedure call to the Receive remote procedure.

Summary
The emphasis of this chapter is a general design

specification of the Xerox Bulk Data Transfer Protocol. A

general design of the Xerox Bulk Data Transfer Protocol is

presented, because it is the only support protocol for

application services on a Xerox Network System that has not

been designed or implemented for the VAX 11/780 with the

Berkeley Unix 4.2BSD operating system. The general design

presented contributes to providing bulk data transfer

support that is needed for such application services as

electronic filing, printing, and mailing on Xerox Network

Systems. These are all the same application services that

the Program and Financial Control office would like the VAX

11/780 to also provide on their Xerox Network System.

A brief discussion of the Xerox Courier Protocol is

also presented, because it is the basis for communications

that is outlined in the Bulk Data Transfer Protocol. The

Bulk Data Transfer Protocol uses the remote procedure call

feature of the Courier Protocol to assign roles to those

system elements that must participate in the transfer of

bulk data. The connections established by the Courier

remote procedure calls are also used to transport the bulk

data between system elements on a network.

. The general design of the Xerox Bulk Data Transfer

IV-26

Imeit Transfer. When Consume is assigned an

immediate role, it accepts the bulk data sent to it by the

initiator. The bulk data is received by Consumed on the

saeconnection established when the initiator made the

Courier remote procedure call to Consume (See Figure IV-B

SADT A32).

Third-arty Transfer. A third-party transfer

request requires Consume to communicate directly with the

initiator, and indirectly with the Produce remote procedure.

The initiator specifies whether Consume is to play an

active, or a passive role in a third-party bulk data

transfer (See Figure IV-8 SADT A33).

When Consume is assigned an active role in a

third-party bulk data transfer, it issues a call to the Send

remote procedure located at the same host address as the

Produce remote procedure (See Appendix B SADT A3311).

* Consume then receives the bulk data sent by the Produce

remote procedure (See Appendix B SADT A3312). The bulk data

is received from the same connection established when

* Consume made the Courier remote procedure call to the Send

* remote procedure.

*When Consume is assigned a passive role in a

third-party bulk data transfer, it waits for a call from the

Receive remote procedure that is issued by Produce (See

Appendix B SADT A3321). Consume then receives the bulk data

sent to it by the Produce remote procedure (See Appendix B
Ot

SADT A3322). The bulk data is received from the same

IV- 25

IV2

When Produce is assigned a passive role in a

third-party bulk data transfer, it waits for a call from the

Send remote procedure that is issued by Consume (See

Appendix B SADT A2421). The bulk data is then sent by

Produce to the Consume remote procedure (See Appendix B SADT

A2422). The bulk data is sent on the same connection

established when Consume made the Courier remote procedure

call to the Send remote procedure.

The Consume Remote Prjc. The Consume remote

procedure, just as the Produce remote procedure, also

communicates with two system elements. It communicates

directly with the initiator, and indirectly with the Produce

remote procedure (See Figure IV-4). The initiator activates

the Consume remote procedure supplying arguments. The main

argument supplied defines the role Consume is to play in a

bulk data transfer (See Figure IV-8 SADT A3). The Consume

remote procedure returns the status of performing its

assigned role via the initiator Courier connection.

Null Transfer. When Consume is assigned a null

role, no bulk data is actually transmitted to Consume (See

Figure IV-8 SADT A31). The operation the Consume remote

procedure performs, when a null role is assigned by the

initiator, is specific to an application service. The

Consume remote procedure reports to the initiator whether

such an operation is sucessful or is a failure.

IV-23

6%

Tranfer.As stated earlier, when Produce is

assigned a null role, then no bulk data is actually

transferred (See Figare IV-7 SADT A22). The function that

the Produce remote procedure performs when a null role is

assigned by the initiator is specific to an application

service. The Produce remote procedure does report a sucess

or failure in performing a null bulk data transfer.

Imeit Tranfer. When Produce is assigned an

immediate role, the bulk data retrieved at the local Produce

host system is sent to the initiator. The bulk data is

transmitted to the initiator on the same connection

0 established when the initiator made the Courier remote

procedure call to Produce (See Figure IV-7 SADT A23).

Third-Paty .Transfe~r. A third-party transfer

request requires Produce to communicate directly with the

initiator, and indirectly with the Consume remote procedure.

The initiator specifies whether Produce is to play an

active, or a passive role in a third-party bulk data

transfer (See Figure IV-7 SADT A24).

When Produce is assigned an active role in a

third-party bulk data transfer, it issues a call to the

Receive remote procedure located at the same host address as

the Consume remote procedure (See Appendix B SADT A2411).

* The bulk data is then sent by Produce to a waiting Consume

* remote procedure (See Appendix B SADT A2412). The bulk data

is sent on the same connection established when Produce made

the Courier remote procedure call to the Receive remote

procedure.

IV-22

4~ ~- - - ;-'-;- r' ' *W- . C r~A ~.~

41

lu4~

I
I; - iJw Ii~ ~Ii

'Eu1; 1

________ cj~

I.
- aa
lv

54

___ I FZ4

S.

ii 1k -

4 ii 4,

S. ~SdI I~*

i

IV-21

that the Produce and the Consume remote procedures

understand, the ProduceServer and the ConsumeServer

processes call Produce and Consume, respectively, with these

arguments (See Figure V-2 and Figure V-3). The status

messages the Produce and the Consume remote procedures

return after performing a bulk data transfer are

encapsulated into Courier data types by the ProduceServer

and the ConsumeServer processes. The encapsulated status

messages are then sent on the Courier connection by the

ProduceServer and the ConsumeServer processes to a waiting

initiator system, thereby completing the remote procedure

calls to the Produce and the Consume remote procedures.

The top level detailed designs of the Produce and the

* Consume remote procedures (See Figure V-4 and Figure V-5)

are very similar to their top level SADT general designs

(See Appendix B, SADT A2 and SADT A3). The differences are

that the top level detailed design of Produce has two

additional processes that do not appear in its top level

SADT general design; and the top level detailed design of

Consume has one additional process that does not appear in

its top level SADT general design.

The process, called SetRole (See Appendix E-57), is

used to decode the role (56:41) the initiator has assigned

the Produce remote procedure. This process is aio used by

the Consume remote procedure for this purpose. This action

is represented in the top level SADT general design of the

V-8

* PROJECT S XNS BULK DATA jAUTHORSI CAP?' CRAMO C.

AS

UHERKI AD* C....GUI. AS *Pre4uceStatma

NODE TITS .DATE&a.. ucsavr~ 22 OCT 1914

Figure V-2. The ProduceServer Process

V-9

* **PROJECT I XMS XDUIADATA AUTM48 CAPOT CRAIG E.
TRANSER PROTOCOL BERNARD, USmr

LZZ
3.11

UIER11 ' C.asetAs. 50 *CoammeStatmu

MOVES . TITL.ES Consuaoeraver At

,o, a OC Io i8

Figure V-3. The ConsumeServer Process

V-10

.- .' -

PROJCT I NMS SULK DATA AIUTNOR S CAPT CIA:G E.
TIAMItE PROTOCOL I CRMWAD * USAF

0. 0.94 AJc

Setifol utt I etPredqace Sodas Xm~tTPartV CanceaL
Date Data Data Rfeceive

2.1. 1 2.1.3 2.. .1.5 a.1.6

UNER19 AT - Rote, 0 a ?gp.Transter. AU *TVpeRot*. C a Dataae
AZ a RetProdState~s. AN - $eundSLatusaa AP *DatalD

BA e PreI4uLtStatma, N a S~mkAddrw&e. AJ Databutfor

A ProduceRel. .5 rdaa~.t~~t

IC *CancelStatuafl

Figure V-4. The Produce Process

V-11

PbaJECI: XHO S ULIK DATA AUThoOns CA0' CRAIG C.

?RAMPZR JOROTCOLt DERnhD. USAF

3.1

set~ele UtflIvat. Accept..t EgCTpartq

* 13. 1..11.3.3 1.3.4

UNEREI AT a Rele. 0 *TvpeTraster. AU *T~pnete. C *DataiN.w

lP 0 COmNM&Ittua. AJ - Dowt.Itfer. Ow. Arcueptststa

Uv SsreeAddreas. AP *DtelD. N *Coaaemgb.

Figure V-5. The Consume Process

V-12

Produce remote procedure by the splitting of the Produce

Role control variable (See Appendix A2). The same action is

represented in the top level SADT general design of the

Consume remote procedure by the splitting of the Consume

Role control variable (See Appendix A3).

The second process, called CancelReceive (See Appendix

E-14), notifies the Consume remote procedure, via the Cancel

remote procedure (56:44), that the third-party bulk data

could not be sent. This action is not represented in the

top level SADT general design of the Produce remote

procedure because the notification sent to the Consume

remote procedure is optional.

The lower level processes, that complete the detailed

design of the Produce and the Consume remote procedures,

closely follow the specification of the lower level

activities outlined in the SADT general design of Produce

and Consume. The lower level detailed design of Produce and

Consume, however, specifies in greater detail those

processes needed to transfer third-party bulk data. These

processes can be identified as processes that allow Produce

and Consume to play complimentary active or passive

third-party roles.

When the Produce or the Consume remote procedure is

assigned an active role in the transfer of third-party bulk

data. they use two processes for communicating with the

. Bulk Data system. One process, called ActTPCommand (See

Appendix E-9), is used by the Produce and the Consume remote

V-13

procedures to issue calls to the Send, the Receive, and the

Cancel remote procedures. Another process, called

RecTPStatusMsg (See Appendix E-49), is used by the Produce

and the Consume remote procedures to receive return messages

from the Send, the Receive, and the Cancel remote

procedures. These two processes perform the same functions

as the Issue Receive Command activity (See Appendix B, SADT

A2411), and the Issue Send Command acitivity (See Appendix

B, SADT A3311), that were specified in the SADT general

design of the Produce and the Consume remote procedures.

When the Produce or the Consume remote procedure is

assigned a passive role in the transfer of third-party bulk

data. they use two processes for communicating with the Bulk

Data system. These two processes depend on a third process,

called GetFileName (See Appendix E-25), for supplying the

pathname to a file that the passive Produce or Consume

remote procedure uses to communicate with the Bulk Data

system.

The first process used for communicating with the Bulk

Data system. when the Produce or the Consume remote

procedure is assigned a passive role, is called the

SetDataAddress process (See Appendix E-56). The

SetDataAddress process is used by Produce and Consume for

storing the address of a buffer area and the identification

(56:43-44) used for a third-party bulk data transfer. The

address of a buffer area, and the identification used for a

third-party bulk data transfer, are stored in the file

V-14

S-

specified by the GetFileName process. In the case of

Produce being assigned a passive role, the address of the

buffer area is the pointer address to the bulk data that the

Send remote procedure is to transmit to an active Consume

remote procedure. In the case of Consume being assigned a

passive role, the address of the buffer area is the pointer

address where the Receive remote procedure is to store the

bulk data it receives from an active Produce remote

procedure.

The second process used for communicating with the Bulk

Data system. when the Produce or the Consume remote

procedure is assigned a passive role, is called the

MonitorTransfer process (See Appendix E-39). The

MonitorTransfer process allows the passive Produce or

Consume remote procedure to monitor the transfer of the

third-party bulk data. This process performs the same

functions as the Wait For Send Command activity (See

Appendix B, SADT A2421), and the Wait For Receive Command

activity (See Appendix B, SADT A3321), outlined in the SADT

general design of the Produce and the Consume remote

procedures.

T ulk sys t. The Bulk Data system

is used whenever a third-party transfer is used to transfer

bulk data from one host system to another on a network. The

Bulk Data system is composed of three remote procedures:

Send, Receive, and Cancel. These are the only remote

procedures specifically defined by the Xerox Bulk Data

V-15

Transfer Protocol (56:43). The Send, the Receive, and the

Cancel remote procedures combine to form the Xerox Bulk Data

remote program (56:45-46). The Produce and the Consume

activates these remote procedures through Courier call

messages. Like the Produce and the Consume remote

procedures, the Bulk Data system also has a server program

for interfacing with Courier call messages.

A detailed design process, called BulkServer (See

Appendix E-12), interfaces with the Produce and the Consume

remote proceduris that issue Courier call messages to the

Send, the Receive, and the Cancel remote procedures. The

BulkServer decapsulates call messages received from a

Courier connection and determines whether the message is for

the Send, the Receive, or the Cancel remote procedure. Once

this is determined, the appropriate remote procedure is

called with the arguments received from the Courier call

message (See Figure V-6). After the appropriate remote

procedure has finished executing, its results of

participating in a third-party transfer are encapsulated

into Courier data types by the BulkServer process. The

BulkServer process then sends the encapsulated results to

the Produce or the Consume remote procedure that issued the

Courier call message.

The top level detailed designs of the Send (See Figure

V-7), the Receive (See Figure V-8), and the Cancel (See

Figure V-9) remote procedures do not have SADT general

V-16

C~a ENS IU DATA IrORI Capy CRAIG C.
MTrANSFE PaOTOCOL DEAO.AA

APSNAT AP.3MAT DU A a

I/I

WE:

V-17

PROJECT' X14S vULK DATA IAUTiaoRt CAPT CRAMG E.
TRANSEUl PROTOCOL D ERM4RD, USAF

Send

IK

GetFi to~me GetData Seadcata CadUmliAn
Addre&*

4.14.1.a 4.t.3 4.1.4

U4ERES AP - Dataib. &K a FleNe.. 3M Uat.Tl.. DUI * Dat.3~afAddresa

IX a GetAddresSLttas. AJ a DataI'af (r. AN * SadStatus

VY e End~ta

.1 l Send 22 OCT 1984

Figure V-7. The Send Process

V-18

Y NC O O T C O OZC O E .~

4.a

SK.31A~

at ftft Eadt~te tawawin

Fiur.8. The .Reeiearoes

I.I

WW l P M SS t FteWW f OSM" I V-19~dra

PROJECTS XNS BULK DATA jAUTH4OR& CAPT CRAZ E .

i Cacelt

4.3

""'f 1e ies EndUaltla

4.3.1 4.3.2 4.3.3

UNUES AP * DetalD. IK a FILeoam., IM U t, 3T BZ F IladStatiua

IV 0 EndStatvm,

NODE' . IT., TE:
4.3 Cancel 22 O:T ;84

Figure V-9. The Cancel Process

V-20

design specifications. The reason for this is that the

emphasis of the SADT general design is on the main structure

of the Xerox Bulk Data Transfer Protocol, that being the

communications among the initiator, the Produce remote

procedure, and the Consume remote procedure. The SADT

general design does show the role the Bulk Data system plays

n the transfer of bulk data (See Appendix B, SADT A2411,

and A3311).

I B~nd BfReot~ Prcdue The Consume

remote procedure activates the Send remote procedure when it

is assigned an active role in a third-party bulk data

transfer. The Consume remote procedure activates the Send

remote procedure that is located at the same host address as

the Produce remote procedure that is playing a complimentary

passive role in a third-party bulk data transfer. The

Consume remote procedure then waits for the Send remote

procedure to send Produce's bulk data. The Send remote

procedure sends Produce's bulk data on the same connection

that was established when Consume issued the Courier call

message to Send.

The Send remote procedure uses four detailed design

processes to accomplish the transfer of Produce's bulk data

to a waiting Consume remote procedure. The first detailed

design process, called GetFileName, supplies the name of the

file that Send and Produce use to communicate the transfer

of Produce's bulk data. The second detail process, called

GetDataAddress (See Appendix E-24) , returns the pointer

V-21

Xerox office automation equipment and mainframe computers,

such as the VAX 11/780, is highly dependent on Xerox to

release its application services protocols fo? piblic use.

Xerox has just recently released its electronic printing

protocols for public use. They are also planning to release

the electronic filing protocols for public use once they

feel it has evolved to a stable standard. Hence, the future

looks bright for a full interface between the VAX 11/780 and

Xerox office automation equipment at the application

services level.

Recommendations

This investigation is an initial effort that not only

assists the Program and Financial Control office in

satisfying their requirements for interfacing the VAX 11/780

with their Ethernet based XNS system, but also provides a

basis for future thesis work. The Program and Financial

Control office was not the only entity interested in this

effort. The people at the Xerox Palo Alto Research Center

and at Advanced Computer Communications were also interested

in this effort. The Program and Financial Control office,

as well as the people at the Xerox Palo Alto Research Center

and at Advanced Computer Communications, are also interested

in continued research in the area of interfacing the VAX

11/780 and Ethernet based Xerox Network Systems. Therefore,

the following specific recommendations are provided:

VI-5

ACC.

D. An interpretor should be available by the

time this report is released that will

provide an interface between the Xerox file

service protocol, and the ACC file service

protocol.

The Program and Financial Control office, being part of

the Department of Defense, is mandated to use the DARPA

TCP/IP protocols for internetworking. Therefore, the

implementation of TCP/IP on the VAX 11/780, using the

Berkeley Unix 4.2BSD operating system, was also

investigated. It was learned that the Berkeley Unix 4.2BSD

operating system provides full support for the DARPA TCP/IP

protocols. It was also learned that the Berkeley Unix

4.2BSD operating system also fully supports the DARPA

application services FTP, SMTP, and TELNET.

This investigation learned that most of the lower level

support protocols used by XNS application services have

already been designed and implemented for the Vax 11/780

using Berkeley Unix 4.2BSD. However, there are still some

key support protocols that have not been fully implemented

for the VAX 11/780, such as the Xerox Bulk Data Transfer

Protocol and the Clearinghouse Protocol.

The Ethernet based Xerox Network System is one of the

most widely used local area network today. The development

of interfaces at the application services level, between

VI-4

should be available for Berkeley Unix 4.2BSD

by the time this report is released.

4. XNS level three (the Courier Protocol and the

Xerox Bulk Data Transfer Protocol)

A. The Courier Protocol is fully implemented

by ACC, and it should be available for

Berkeley Unix 4.2BSD by the time this report

is released.

B. A general design, detailed design, code

implementation, and testing of the Xerox Bulk

Data Protocol is presented in chapters four

and five.

C. The Courier Protocol is fully implemented

by Berkeley Unix 4.2BSD, however this

implementation is not supported by XNS

levels' one and two at present.

5. XNS level four (Application services)

A. The Xerox electronic filino and mailing

protocols have not been released for public

use.

B. The Xerox electronic printing protocol

has just recently been released for public

use.

C. The Clearinghouse distributed database

protocol has been partially implemented by

VI-3

but no device driver software is available

for Berkeley Unix 4.2BSD.

C. Device driver software is available for

the Interlan and 3Com Ethernet controller

boards as part of Berkeley Unix 4.2BSD.

D. Fully implemented by Advanced Computer

Communications (ACC), and it should be

available for Berkeley Unix 4.2BSD by the

time this report is released.

2. XNS level one (Internet Datagram Protocol)

A. Fully implemented by NRC and Bridge

Communications, including a Berkeley Unix

4.2BSD version.

B. Fully implemented by Interlan, but does not

have a Berkeley Unix 4.2BSD version.

C. Fully implemented by ACC, and it should

be available for Berkeley Unix 4.2BSD by the

time this report is released.

3. XNS level two (Internet Transport Protocols)

A. Fully implemented by NRC and Bridge

Communications, including a Berkeley Unix

4.2BSD version.

B. Fully implemented by Interlan, but does not

have a Berkeley Unix 4.2BSD version.

C. Partially implemented by ACC, and it

VI-2

Conclusions anjd Recommendations

Conci us ions

This investigation was initiated because the Program

and Financial Control office needed to interface the VAX

11/780, using the Berkeley Unix 4.2BSD operating system, and

their Ethernet based Xerox Network System. This interfacing

would allow such services as electronic filing, printing,

and mailing between the VAX 11/780 and Xerox computer

devices on an Ethernet. However, since Xerox computer

devices on an Ethernet use the layered Xerox network

structure for communications, this same structure would also

have to exist on the VAX 11/780. Therefore, this

investigation concentrated on determining which of the

protocols, that compose the five level Xerox network

structure, needed to be implemented for the VAX 11/780.

At the time this report was concluded, the status of

the Xerox protocols available and implemented for the VAX

11/780, using the Berkeley Unix 4.2BSD, is as follows:

1. XNS level zero (Ethernet Specification)

A. Fully implemented by Bridge Communications

and Network Research Corporation (NRC),

including device driver software for Berkeley

Unix 4.2BSD.

B. Fully implemented by Interlan and 3Com,

VI-l

"C" programming language for implementation of all network

functions. The Vax 11/80 with the Berkeley 4.2BSD operating

system is the host system the Program and Financial Control

office wants to interface with their Ethernet based XNS

system. The "C" programming language is also used because

the interfaces to the Courier Protocol and the Sequenced

Packet Protocol are in the "C" language.

The dynamic testing of the code implementation could

not be performed for a number of reasons. One reason is

that the Berkeley 4.2BSD operating system could not be

acquired in time for this research. Another reason is the

Courier Protocol and the Sequenced Packet Protocol, the

protocols the code implementation depends on, are currently

not implemented for the Berkeley 4.2BSD operating system.

However, static analysis is performed and dynamic

analysis is outlined for the code implementation. Static

analysis is used to ensure the syntactic and semantic

correctness of the code implementation. The dynamic

analysis test procedures outlined for the code

implementation specifiy those conditions that should be

tested for the initiator system, the Produce remote system,

the Consume remote system, and the Bulk Data system.

V-30

-. system. The code implementation of the Xerox Bulk Data

Transfer Protocol is a model for implementing a bulk data

services on a network system. The test plan of the four

systems addresses those conditions which should be tested

for in a particular code implementation of the Xerox Bulk

E Data Transfer Protocol for a given application service.

* This chapter presented an implementation and testing of

the Xerox Bulk Data Transfer Protocol. The implementation

is based on the general design of the Xerox Bulk Data

Transfer Protocol outlined in chapter four. The

implementation is composed of two parts. The first part is

a detailed design of the SADT general design. The second

5 !~.part is the derivation of code in a high level programming

language from the detailed design.

The detailed design of the SADT general design is

presented using the structure chart technique. The detailed

design is composed of four systems, the initiator system,

the Produce remote procedure system, the Consume remote

procedure system, and the Bulk Data system. These systems

represent the entities that negotiates the transfer of bulk

data from one host system to another.

* - The code implementation of the detailed design is in

the "C" high level programming language. This is done for a

number of reasons. The main reason being that the Vax

* 11/780 with the Berkeley 4.2BSD operating system uses the

V-29

The test plan is composed of four system test; a test

of the initiator system, a test of the Produce remote

system, a test of the Consume remote system, and a test of

the Bulk Data system (See Appendix F). A separate test is

- - outlined for each of the four systems because it is possible

for a host system not to have all four systems, therefore

only the systems that a host system has needs to be tested.

For instance, a host system might only produce bulk data.

Therefore. it only has to test its Produce remote system and

its Bulk Data system.

The test plan uses the equivalence partitioning

technique for performing dynamic analysis. The equivalence

partitioning technique is used because it selects a

reasonably small subset of test cases, out of the infinitely

large set of possible test cases that has a high probability

of finding errors (37). Given some input to a system, valid

and invalid statements about the input can be listed (See

Appendix F-2). Each valid and invalid statement is then

given a unique number. Test cases, which are specified

values for the inputs to a system, are then constructed to

cover as many valid and invalid statements about the inputs

to a system.

The test plan presented for the code implemenation of

the Xerox Bulk Data Transfer Protocol only lists the input

conditions, the valid equivalence classes, and the invalid

equivalence classes. It does not list any test cases.

Recall. test cases are specified values for inputs to a

V-28

White box analysis involved evaluating the code in each

module. one area evaluated was to ensure that variable

references were of the same data type. Another area

evaluated was to ensure that variables had been assigned

values before they were referenced. Finally, path analysis

* was used to ensure each line of code in a module could be

executed.

Interface analysis involved evaluating subroutine calls

between modules. The arguments passed between modules were

checked to ensure they were in the correct calling sequence.

The data types of the arguments passed between modules were

checked to ensure they were of the same data type. Modules

that passed values to submodules through arguments were

checked to ensure those arguments were assigned values.

Finally. submodules that were supposed to return values

through arguments were checked to ensure that those

arguments were assigned values.

Dynamic& Analis~. Dynamic analysis involves the

- . execution of a program over sample test data followed by

analysis of the output (28:185). This type of analysis is

sometimes referred to as black box testing, because during

testing you are only concerned with the inputs and the

outputs of a module, or a system. Dynamic analysis could

not be performed, because the code implementation was not

installed on a host system. However, a test plan is

outlined for dynamic analysis of the Xerox Bulk Data

Transfer Protocol.

V-27

-The code implementation of the Xerox Bulk Data Transfer

Protocol designed for the Vax 11/780 with the Berkeley

4.2BSD operating system was not installed and tested on this

host system. There are a number of reasons why the code

implementation was not installed and tested. First, the

Berkeley 4.2BSD operating system could not be acquired in

time for this research. Second, at the time of this report

the ACC Nu-111XNS software package was not implemented for

the Vax 11/780 with the Berkeley 4.2BSD operating system.

Third, the Vax 11/780 used in this research has not been

configured with an Ethernet controller board. Finally, an

Ethernet based XNS system could not be acquired in time for

testing. Therefore, test procedures are used to perform

static analysis on the code implementation of the Xerox Bulk

Data Transfer Protocol. Test procedures are also outlined

for performing dynamic analysis once the code implementation

has been installed on the Vax 11/780 with the Berkeley

4.2BSD operating system, along with the ACC NU-ll/XNS

software package, and an Ethernet controller board.

SaticU. AnalJ.ys8.is. Static analysis of a software system

involves the use of validation methods that do not require

the actual execution of the system (28:83). Static analysis

was used to ensure the syntactic and semantic correctness of

the code implementation of the Xerox Bulk Data Transfer

40 Protocol. This was done by performing two types of analyses

on the code implementation, white box analysis, and

* interface analysis.

V-26

4.2BSD operating system, it should be available for this

host system configuration by the time this report is

released.

The host system that the coding implementation of the

Xerox Bulk Data Transfer Protocol is designed for is the Vax

11/780 with the Berkeley 4.2BSD operating system. This host

system is used because the aim of this thesis investigation

is to assist the Program and Financial Control office in

networking their XNS environment and the Vax 11/780 with the

Berkeley Unix 4.2BSD operating system.

The high level programming language used to implement

the detailed design of the Xerox Bulk Data Transfer Protocol

is the ECU programming language (29, 30, 32). The "C"

programming language is used, because the Berkeley Unix

4.2BSD operating system uses it for most of its system

programming and networking applications. The "C"

programming language is also used, because the NU-ll/XNS

user interfaces to the Courier Protocol and the Xerox

Sequenced Packet Protocol, are only in the "C" programming

language.

The coding implementation of the Xerox Bulk Data

Transfer Protocol detailed design is a one-to-one

transformation of the detailed design processes to "C"

programming modules (See Appendix H). Some of these modules

rely on system routines that are not a part of the "C"

* programming language, but are supplied by the operating

system. Any system routines used are documented in the

module header located before the code of each module.

4 V-25

exist. The third detailed design process, calledEndWaiting,

signals to the passive party that the bulk data transfer

could not be attempted.

Code Implementation. The detailed design of the Xerox

Bulk Data Transfer Protocol is used to implement this

protocol in a high level programming language on a host

system. Any implementation of the Xerox Bulk Data Transfer

Protocol must use the specified support protocols of the XNS

structure, if it is to be in accordance with the outlined

standard. The Xerox Bulk Data Transfer Protocol outlines

communications among the initiator, the Produce remote

procedure, and the Consume remote procedure via the remote

procedure call facility of the Courier Protocol. It also

specifies that the bulk data is transmitted between host

systems through the use of the Xerox Sequenced Packet

Protocol.

The Advance Computer Communications' XNS Protocol

Package, called NU-ll/XNS-Version 2.0 (43), is used to

support the coding implementation of the Xerox Bulk Data

Transfer Protocol. The NU-ll/XNS software is used because

currently it is the only software package that has an

implementation of the Courier Protocol (41). The NU-ll/XNS

software package also contains support for the Xerox

Sequenced Packet Protocol (42), along with other protocols

that compose the XNS architecture structure (43). Although

at the time of this research, the NU-ll/XNS-Version 2.0 is

not implemented for the Vax 11/780 with the Berkeley Unix

V-24

• a: . - .i . -. -. : - / i . i *i

transfer of Produce's bulk data. The second detail process,

called GetDataAddress, returns the pointer address to a

buffer area specified by Consume. This Receive remote

procedure uses this buffer area to store the bulk data it

receives from the Produce remote procedure. The third

detail process, called AcceptData, receives the bulk data

sent by the Produce remote procedure. The fourth detailed

design process, called EndWaiting, signals to Consume that

the bulk data transfer is completed.

Th& cancelRemote Procedr. The active

party in a third-party transfer uses the Cancel remote

procedure to signal to the passive party that the bulk data

transfer could not be attempted. The Cancel remote

procedure provides a means to prevent the passive party from

idly waiting for a bulk data transfer that cannot happen.

The Produce remote procedure might call Cancel when it

cannot locate the requested bulk data. The Consume remote

procedure might call Cancel when it cannot receive the bulk

data Produce is to send.

The Cancel remote procedure uses three detailed design

processes to perform the task of notifying the passive party

that a bulk data transfer cannot be attempted. The first

detailed design process, called GetFileName, supplies the

name of the file that the passive party uses to monitor the

transfer of the bulk data. The second detailed design

process, called FindFile (See Appendix E-22), ensures that

the file the passive party is supposed to be monitoring,

V-23

4

.

address to Produce's bulk data. The third detail process,

called SendData, transmits Produce's bulk data to the

waiting Consume remote procedure. The fourth detailed

design process, called EndWaiting (See Appendix E-19),

signals to Produce that the bulk data transfer is-completed.

Tj Rlec.eive Remote ProcedureL. The

Produce remote procedure activates the Receive remote

procedure when it is assigned an active role in a

third-party bulk data transfer. The Produce remote

procedure activates the Receive remote procedure that is

located at the same host address as the Consume remote

0 procedure that is playing a complimentary passive role in a

third-party bulk data transfer. The Recieve remote

procedure accepts the bulk data sent by the Produce remote

* procedure on behalf of the passive Consume remote procedure.

The Receive remote procedure then waits for the Produce

remote procedure to send its bulk data. The Produce remote

procedure sends its bulk data on the same connection that

was established when Produce issued the Courier call message

to Receive. The Receive remote procedure accepts the bulk

data sent by the Produce remote procedure on behalf of the

passive Consume remote procedure.

The Receive remote procedure uses four detailed design

processes to accomplish the reception of Produce's bulk data

on behalf of a Consume remote procedure. The first detailed

design process, called GetFileName, supplies the name of the

file that Receive and Consume use to communicate the

V-22

1.An Ethernet network should be established at AFIT.

-* The hardware is already there for connecting the

AFIT research VAX 11/780 to an Ethernet. In fact,

AFIT already has an Ethernet controller for the VAX

11/780, an Ethernet Transceiver, an Ethernet

Transceiver cable, and Ethernet coaxial cable

available for constructing an Ethernet local area

network.

2. The Program and Financial Control office should be

contacted in an effort to acquire one of their

Ethernet networks for hardware support in the

research of interfacing the VAX 11/780 with

Xerox office automation equipment on an Ethernet.

3. The Advanced Research Corporation has expressed an

interest in allowing AFIT to become a beta test

site for their XNS products. Therefore, a

follow-up should be made in this area.

4. The Xerox Palo Alto Research group has setup joint

research efforts with many institutions. An

effort should be made to include AFIT has one of

those institutions that does joint research with

Xerox.

5. A direct follow-on thesis to this thesis effort

VI-6

could deal with the installation and thorough

dynamic testing of the design and implementation of

the Xerox Bulk Data Transfer Protocol presented in

chapters four and five. This new thesis effort

would however depend on the acquiring of ACC XNS

software, which might be possible if AFIT becomes

a beta test site for their XNS products. This new

thesis effort would also require the installation

of an Ethernet controller board into the bus of the

VAX 11/780, along with the construction of an

Ethernet local area network for testing.

6. Another interesting area, which is also of interest

to the Program and Financial Control office, is

the development of a protocol converter between

the DARPA TCP/IP protocols, and the XNS Internet

Datagram and Internet Transport Protocols.

7. Continuing the effort of providing electronic

filing, printing, and mailing services between the

Xerox office automation computers and the VAX

11/780.

8. Even if an Ethernet based Xerox Network System

cannot be established at AFIT, research should

still be pursued in the use of applying some of

the Xerox protocols to new network systems being

VI-7

developed, as well as for existing network systems.

9. Once an Ethernet network system as been established

at AFIT, the interfacing of it with other networks

at AFIT, such as DELNET (26, 45), should be

initiated.

S

0

VI-8
0

Bibliography

1. ACC Products. Price List. Advanced Computer
Communications, Santa Barbara CA, April 1984.

2. ACCES NETWORK FILE MANAGEMT SYSTEM. Product
Brochure, Advanced Computer Communications, Santa
Barbara CA, September 1984.

3. Advanced mQ Communications Exchange System.
Product Brochure, Advanced Computer Communications,
Santa Barbara CA, 1983.

4. B Software f=r Unit 2n the VAX. 4.2BSD
Version. Report. Computer Systems Research Group,
University of California, Berkeley, Berkeley, CA,
August 1983.

5. Brescia, Mike, Robert Hinden, and Alan Sheltzer.
"Connecting Different Types of Networks with Gateways,"
Data Communications 11... August 1982.

6. Cerf, Vinton G. and Peter T. Kirstein. "Issues in
Packet-Network Interconnection," Prceeia 2f the
IM, 66.11. (November 1978).

7. Cerf, Vinton G. and Robert E. Kahn. "A Protocol for
Packet Network Intercommunication," I= Transactions
o Communications, coQzn22i. (May 1974).

8. Constantine, L. L. and E. Yourdon. S ured Desgn:
Fundamentals o A Disiin t Comfuter Program And
Systms Design. Yourdon Press. New York, NY.
November 1978.

9. Cooper, Eric et al. 4-2gn Sy.sem Manual. Manual.
Computer Systems Research Group, University of
California, Berkeley, Berkeley, CA, July 1983.

10. Crane, Ronald C. and Edward A. Taft. P_ c
Considerations in t Local Network D gn. Xerox
Palo Alto Research Center. Palo Alto, California.
February 1980.

11. SIiSM. Product Leaflet. Bridge Communications
Incorporated, Washington D. C., undated.

12. CS1100 Communications Server. Product Leaflet.
Bridge Communications Incorporated, Washington D. C.,
undated.

13. Dalal, Yogen K. Usgt M uliple Networks in Xerx'

BIB-l

.

NetworkSystem. Xerox Office Products Division. Palo
Alto, California. 1982.

14. Department of Commerce. 2h& .Sel n QtLocal Area
SNtworks. NBS 500-96. National Bureau of

Standards. Washingtion, DC, November 1982.

15. Dickover, M. E., C. L. McGowan, and D. T. Ross.
*Software Design Using SADT," Proce1in a 1977 AM

16. Digital Equipment Corporation; Intel Corporation; Xerox
Corporation. The Ethernet, A Local Area Network: Data
Link Layer and Physical Layer Specifications. Version
1.0. September 1980.

17. DS3C300/1081/4M. 3C300 Unibus Ether net Cotrller.
Product Brochure. 3Com Corporation, Mountain View CA,
undated.

18. Fabry, Robert S., William N. Joy, and Samuel J.
Laffler. 4.2BD i Lv.Qor g Implementation Note.
Manual. Computer Systems Research Group, University of
California, Berkeley, Berkeley, CA, July 1983.

19. Fusion Ethernet Software. Product Brochure.
Network Research Corporation, Los Angeles CA, undated.

20. Fusion File Transfer Version 2.0. Product Leaflet.
Network Research Corporation, Los Angeles CA, undated.

21. Fusion Network tilitie Version 2.&. Product Leaflet.
Network Research Corporation, Los Angeles CA, undated.

22. Fusion Run-Time Librarigs Version 2.&. Product
Leaflet. Network Research Corporation, Los Angeles CA,
undated.

23. Fusion Virlj Terminal Version 2.Q. Product Leaflet.
Network Research Corporation, Los Angeles CA, undated.

24. Gee, Kirk. "Choosing a Local Area Network, C
Communications, 6.-6 (December 1983).

25. Hammond, J. L., Brown J. E., and Liu, S. S.
"Development of a Transmission Error Model and an Error
Control Model," Technical Report RADC-TR-75-138. Rome
Air Development Center, Griffis AFB NY, 1975.

26. Hartrum, Thomas C., Professor of Electrical
Engineering. LSINET. The AFIT Digital Engineering

9 - IaLarQL (DEL) Networ Qt ILST-11 a P£P-11
" .e. Version 3.1. School of Engineering, Air

BIB-2

....................

Force Institute of Technology, Wright-Patterson AFB,
Ohio, September 1984.

27. Hoop, Clarence G. Manager for Computer and Office
Automation Resources. Memorandum of Possible AFIT
Projects. Office of the Assistant Secretary of Defense
Comptroller (Program and Financial Control Office).
Washington DC, January 27, 1984.

28. Howden, William E. and Edward Miller. Sgftware Testing
And Vaidation Te•ngue. IEEE Computer Society.
Long Beach, CA. 1978.

29. Hunter, Bruce H. Understanding . SYBEX Inc.
Berkeley,CA. 1984.

30. Kernighan, Brian W. and Dennis M. Ritchie. Te=
PrQgramnng Language. Prentice-Hall, Inc. Englewood
Cliffs, NJ. 1978.

31. Kirdle, Bob and Sam Leffler. Hints n 2aCnfiguing VAX
Stems. Report. Computer Systems Research Group,
University of California, Berkeley, Berkeley, CA, March
1983.

32. Kochan, Stephen G. Prgramming in f. Hayden Book
*Company. Hasbrouck Heights, NJ. 1984.

33. Leffler, Samuel J. Dg Fixes and hangnega 4.2BSD.
Report. Computer Systems Research Group, University of
California, Berkeley, Berkeley, CA, July 1983.

34. -------. Cha ngee t wK in 4.2SD. Report.
Computer Systems Research Group, University of
California, Berkeley, Berkeley, CA, July 1983.

35. "Local Area Network Data Link Control,' Working
Paper. DLMAC Subcommitte of IEEE Project 802 on Local
Area Network Standards, September 1980.

36. Martin, Marleen R. wUnix and Local Computer
Networking, =EES 1= 1 SPRING, May 1982. .

37. Milne, Robert, Capt, Professor of Electrical
Engineering. Lecture materials distributed in EE
5.93, Software Engineering. School of Engineering, Air M
Force Institute of Technology, Wright-Patterson AFB,
Ohio, 1984

38. Network Information Center. Internet Protocol
Implementation Guide. Menlo Park CA: SRI
International, August 1982.

BIB-3

39. NEkT/PLL . Product Leaflet. Interlan Corporation,1 . Westford MA, undated.

40. NS4200 .. Internet Transrt P. Product Leaflet.
Interlan Corporation, Westford MA, undated.

41. NU-11/XNS.V2.COUR.VO01. "C" LanguagDe Iterf.ae 2
Courier. Manual. Advanced Computer Communications,
Santa Barbara CA, 1983.

42. NU-lI/XNS.V2.SPP.UG.VO01. "C" Language Tnterfae tQ
the S quence Packet P c. Manual. Advanced
Computer Communications, Santa Barbara CA, 1983.

43. NU-ll/XNS.V2.0V.V00l. Nk11/.XNS. Manual. Advanced
Computer Communications, Santa Barbara CA, 1983.

44. Peters Lawrence J. Software Design: Methods I.
Tcni =. Yourdon Press. New York, NY. 1981.

45. Phister, Paul W., Capt. PLotoolsitandards And
Implementation Within Jltj& Diial ng n lrLbrts CmueNetwork (DLE)Uigthe
Univergal Network Jeace Device .UNID. MS thesis.
Wright-Patterson AFB, Ohio: School of Engineering,
Air Force Institute of Technology, December 1983.

46. Postel, Jonathan B. "Internetwork Protocol
Approaches," I=E Transactions on Communications, 2.4.
(April 1980).

47. Product R Liat. Product List. Interlan
Corporation, Westford MA, May 1984.

48. Ross, D. T. and K. E. Schoman. "Structured Analysis
for Requirements Definition," J=E Transactions n
Software Engineering. January 1977.

49. Seward, Walter, Major, Professor of Electrical
Engineering. Lecture materials distributed in
ENE 462, Computer Communication Networks. School of
Engineering, Air Force Institute of Technology,
Wright-Patterson AFB, Ohio, February 1982.

50. Thomas, M. "Functional Decompositoin: SADT,"
Sru.tured Analysis and Design. InfoTech State of the
Art, 1978.

51. Wofberg, N. E. The Et Hndbook. Shotwell and
Associates. San Francisco, CA. 1983.

* 52. XSIG 018404. Tnteg s]a Reader's Guide. Xerox
System Integration Guide. Xerox Corporation, El

BIB-4

Segundo, CA, April 1984.

53. XSIG 038404. Introduction t mto .cprg. Xerox System
Integration Guide. Xerox Corporation, El Segundo, CA,
April 1984.

54. XSIS 028112. Internet Tan r . Xerox
Systems Integration Standard. Xerox Corporation. Palo
Alto, CA. 1982.

55. XSIS 038112. Courier: The RemoteProe e fall
Protocol. Xerox System Integration Standard. Xerox

Corporation, Stamford, Connecticut, December 1981.

56. XSIS 038112 Add. la. D" Data Transfer. Xerox System
Integration Standard. Xerox Corporation, Stamford,
Connecticut, April 1984.

57. XSIS 048404. Intler&rs Electronic Printing Standad.
Version 2.1. Xerox System Integration Standard. Xerox
Corporation, Stamford, Connecticut, April 1984.

58. XSIS 058404. C Code Standard. Xerox System
Integration Standard. Xerox Corporation, Stamford,
Connecticut, April 1984.

59. XSIS 078404. Clearinghouse Protoco. Xerox System
Integration Standard. Xerox Corporation, Stamford,
Connecticut, April 1984.

60. XSIS 088404. Time PrtoQ.g. Xerox System Integration
Standard. Xerox Corporation, Stamford, Connecticut,
April 1984.

61. XSIS 098404. Authentication Protocol. Xerox System
Integration Standard. Xerox Corporation, Stamford,
Connecticut, April 1984.

62. XSIS 118404. Printing P. Xerox System
Integration Standard. Xerox Corporation, Stamford,
Connecticut, April 1984.

63. XSIS 168404. Clearinghouse Entr Formats. Xerox
System Integration Standard. Xerox Corporation,
Stamford, Connecticut, April 1984.

64. Yourdon, E. N. Classic in Software E.nginerng.
Yourdon Press. pp 207-232. New York, NY. 1979.

65. Zimmermann, H. "OSI Reference Model - The ISO Model of
Architecture for Open System Interconnection," JI=E
Transaction Communications, 2..4. (April 1980).

BIB-5

.

- . . - . , - ° -• -. r. - -2- - .- - - -.- . - -M % -- -i. - '. -1.i -- im- W - - . L-1 wm'

66. 09-0009-01. fl/ Communications So Product
Leaflet. Bridge Communications Incorporated,
Washington D. C., undated.

67. 09-0009-01. Internetwork Router Gtw Se. /.
Product Leaflet. Bridge Communications Incorporated,
Washington D. C., undated.

68. 09-0012-01. Ethernet System Produict Ldne. Product
Brochure. Bridge Communications Incorporated,
Washington D. C., undated.

69. 09-0025-01. Ethernet-X.25 Interconnection Service
Gtw Server/l. Product Leaflet. Bridge
Communications Incorporated, Washington D. C., undated.

70. 3CEL-I(44/15)WCL. Ethr n with Ethrtr 02io.
Product Brochure. 3Com Corporation, Mountain View CA,
undated.

71. 3CEM-1(44/15)WCL. Eea. Product Brochure. 3Com
Corporation, Mountain View CA, undated.

72. 3CPL-1(44/7.5)WCL. LerS erie Personal Ntwgkiag
Products. Product Brochure. 3Com Corporation,
Mountain View CA, March 1984.

73. 3CES-l(44/15)WCL. E. Product Brochure. 3Com
Corporation, Mountain View CA, undated.

BIB-6

-.. • .• .-....-.........- - " .. - °. .
, , % , . . . * * , . o .. ,

Captain Craig E. Bernard was born on 5 October 1957 in

Lafayette, Louisiana. He graduated from high school in

Lafayette, Louisiana, in 1975 and attended the University of

Southwestern Louisiana from which he received the degree of

Bachelor of Science in Computer Science in May 1979. Upon

graduation, he received a commission in the USAF through the

ROTC program. Upon entering active duty in June 1979, he

served as a Computer System Analyst for the Air Force Data

Services Center at the Pentagon, Washington D.C., until

entering the School of Engineering, Air Force Institute of

Technology, in May 1983.

Permanent address: 308 Sunnyside Lane

Lafayette, Louisiana 70501

V-I

.° • o . ,' . . • ,-• ° . . , ° " . .

UNCLASSTFTF
S ECURITY CLASSIFICATION OF THIS PAGE VOLUME I

REPORT DOCUMENTATION PAGE
I& REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSTFT ,r
2@ SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release;

2b. OECLASSIFICATION/DOWNGRADING SCHEDULE distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/G CS/ENG/840-4

Ga. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION
(Ifapplicable)

School of Engineering AFIT/ENG

6. ADDRESS (City. State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

I&e NAME OF FUNDING/SPOISQRING J8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION OASD(C) Program (If applicable)

& Financial Control Office OASD(C) P&FC

4W. ADDRESS (City. State and ZIP Coade
)

10. SOURCE OF FUNDING NOS.
PROGRAM PROJECT TASK WORK UNIT

Pentagon ELEMENT NO. NO. NO. NO.

Washington, DC 20301-1100

11. TITLE (Include Security Claufication)

See Box 19

12. PERSONAL AUTHOR(S)
Craig E. Bernard, Capt, USAF

13& TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT

MS Thesis FROM TO 1984 December 383
16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18, SUBJECT TERMS (Continue on reuerse if necessary and identify by block number)

FIELD GROUP SUB. GR. Local Area Networks, Computer Communication Networks,
O 0 n2 Computer Network Architectures , y.. 2f

19. ABSTRACT (Continue on reuerse if necessary and identify by block number)

Title: INTERFACING THE VAX 11/780 USING BERKELEY UNIX 4.2BSD AND ETHERNET BASED XEROX
NETWORK SYSTEMS

Thesis Chairman: Dr. Gary Lamont

OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED X SAME AS RPT. C[OTIC USERS 0 UNCLASSIFIED

22.44AM&OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL
Ure .ary B. Lamont (Include Area Code)

1 513-2553450 AFIT/ENG

0D FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF TIS PAGE

SECURITY CLASSIFICATION OF THIS PAGE

. r....... g :2. , ,,ciaL . tr.. " -ofi ce wuir iii:e t- bc

aLle t, perfori: electronic filing, maiiing, and printing services

between the ... 11/78b, using the Fer1eley Unix 4.21-S7• operating s:.stcm,
and U7thernet based Xcrox networh Systems (XUS). This study researched

t:.'e imjiiextaton of an electronic filing service between the VAX 11/780

and Dhernet based):S systems.. Thiis study also researched implementations

of the D!R-A T.P/T protocols rr the VAX 11/780, because P&FC is mandated

by D-: tc use thetc rctrczls f internetworking systems.

--s study began by outlining the protocol specifications required

for interfacing with XUS systems. An extensive literature search was then

performed to determine which of the)XS protocol specifications, as well as

the Trn/TP protocols, were already implemented for the VAX 11/780. It was

found that Ferkeley Unix 4.2FSIP contains an implementation of TCP/IP. It

was alsc found that the Xerox Pulk Data Transfer Protocol, a protocol used

by the electronic filing service to transfer files, was not implemented.

Therefore, a design, implementation, and testing of the Bulk Data Transfer

Protocol were presented. Vith the design and implementation presented,

most of the protocols needed to implement an electronic filing service on

t;l VPx 11/782 exist. ::owcver, Xerox has not yet released its electronic

filing protccol for public usc.

U: CLA SS :F E7:

SECURITY CLASSIFICATION OF THIS PAGE

*FILMED

5-85

DTIC

